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ABSTRACT 

 
In this paper, we present SwarmSense, a novel collaborative 
navigation algorithm for a group of drones to effectively 
coordinate and share information for disaster response and 
management applications such as wildfires. Specifically, 
SwarmSense is aimed for efficient and resilient ways to 
autonomously manage complex unmanned aerial systems for 
search and rescue missions. SwarmSense does this by 
cooperatively mapping wildfire zones and detecting 
displaced survivors in need while fully adapting to dynamic 
changes. In other words, SwarmSense is designed to find 
areas where the disaster hotspots are, map and track the 
hotspots precisely in real time, and find and rescue the 
survivors spread across the disaster area. The performance of 
the proposed SwarmSense algorithm is extensively evaluated 
under ten realistic wildfire scenarios, each lasting 60 minutes, 
and is shown to exhibit a very high level of robustness and 
effectiveness to accomplish its missions.  
 
Index Terms - Drone, Search, Swarm 
 

1. INTRODUCTION 
 
 An effective drone swarm and search algorithm must address 
the following major challenges: (i) limited resources; (ii) 
limited information availability; (iii) extremely large area 
with highly challenging navigation conditions [1], [2], [3]. 
First, the algorithm must take into the limited resources in 
terms of the number of drones available and short battery life. 
Second, the algorithm must address the lack of information 
about the disaster in terms of the location and size of fire 
zones, continuously changing weather conditions, and the 
location of any survivors in need of the rescue. Finally, the 
algorithm must be able to adapt with robustness for 
challenging terrain conditions in combination with the 

dynamic weather conditions. Underestimating the terrain and 
weather effects lead to explosion/crash of the drones, while 
the conservative approach will lead to poor disaster response 
effectiveness. SwarmSense addresses these challenges with 
high performance measured in terms of the three metrics: (i) 
firezone detection ratio (percentage of the firezones detected 
by the drones with no prior knowledge of their locations); (ii) 
firezone mapping precision under changing constantly due to 
dynamic weather conditions; and (iii) drone mission 
completion ratio (the number of drones completing the entire 
scenario without being destroyed by fires or terrain).  
 
 We use the AMASE simulator developed by Air Force 
Research Laboratories (AFRL), available at https://github.co 
m/afrl-rq/OpenAMASE, and evaluate the performance using 
ten 60-minute scenarios provided by the AMASE during the 
competition held at AFRL during March 29-31, 2019 
(https://fire-hack.devpost .com/). Our extensive study shows 
that SwarmSense detects close to 100% of all the wildfires in 
the region within the first 40 minutes for all ten scenarios, 
achieves a high degree of precision (provided by the AMASE 
scoring mechanism proportional to the mapping precision), 
and maintains as high as 91% of the drones despite extremely 
challenging weather (wind) and terrain conditions.  
 

2. SWARM AND SEARCH 
 
2.1. AMASE 
 
 AMASE is a discrete event simulator for aircraft automation 
and autonomy analysis and is used to validate the algorithm 
as well as evaluate its performance under a wide range of 
disaster scenarios. A total of 10 scenarios were selected from 
over 30 scenarios provided during the ‘Swarm and Search AI 
2019 Fire Hack’ event hosted by AFRL during March 29-31, 
2019. A scenario consists of 9 to 18 drones, battery life for 

mailto:cheolmin.jeon94@gmail.com
mailto:jeongsoo@episyscience.com


 
 

 Figure 1. AMASE Example Scenario  
 
each drone, designated battery recovery zone, size and 
location of fires, smoke zone of fire, locations of ground 
entities to represent survivors, terrain information of the 
entire disaster area, and so on. 
Figure 1 shows a scenario and its elements: (i) drones are 
represented as colored arrows, battery recovery zone as small 
circles, wildfires as dark polygons, smoke zones (bigger than 
fire zone) as a light polygon, ground entities as stars, and the 
square border (keepin-zone). In particular, the number of 
firezones is more than one. For each and every scenario, a 
final score is produced that measures: how fast and how 
precisely a disaster area is mapped by drones, and how many 
entities are detected. At 1200, 2400, and 3600 seconds, the 
simulation calculates the rate of covering the firezone. 
(Calculate the ratio of cover area by 3, 2, and 1 times, 
respectively). Specifically, the scoring measures the mapping 
precision by comparing the areas of the mapped and true 
firezone areas. Both overshoot and undershoot of the area 
mapping is penalized. Entity perception is scored according 
to the number of detected entities (survivors) by the 
algorithm. 
 The important things are the firezone height is up to 1200m, 
and the smoke zone height is from 1000m up to 4000m from 
the terrain. So when the searching drones are into the firezone 
altitude, they are burned out. And when the searching drones 
are into the smoke zone altitude, they are not able to detect 
anything. It means that the drones couldn’t find all of entity 
if they are into the smoke zone altitude. AMASE has the 
weather feature which is wind. The influence of the wind 
moves and resizes firezone and smokezone, and affect the 
direction of the drone. While the drones are moving the 
location or changing their body angle to curve, the sensor 
which is for detecting firezone and entity might look in any 
direction other than the desired direction. There is gimbal for 
controlling the drone’s sensor, we can change angle of gimbal 
to the search area of the drone. Since the altitude between  

 
 

Figure 2. SwarmSense States and Possible Transitions  
 
terrain and the drone also affect the search area of the drone, 
the length of the sensor is adjusted considering the height of 
the drone and the altitude of the terrain. 
 
2.2. SwarmSense 
 
 We present SwarmSense to address existing algorithmic 
problems as mentioned in Introduction. SwarmSense allows 
drones to have their own state, collaborate with other UAVs  
to perform a given entry (the firezone discovery and 
destructor discovery). For a variety of situations that can 
occur in real life situations, SwarmsSense can organically 
resolve drones by changing the state of the drones. 
 SwarmSense allows drones to be a state and coordinate each 
drone. In SwarmSense, a drone may be at one of the 7 states 
which are ‘SCANNING’, ‘INITIAL’, ’SEARCHING’, ’AP 
PROACHING’, ’MAPPING’, ’CHARGING’ and ‘DEAD’, 
as described below:  

1. INITIAL: Upon the beginning of the scenario, each 
and every drone makes an analysis of the current 
situation and decides the next action and the state. 

2. SCANNING: During the INITIAL state, one drone 
per recovery zone is randomly selected to switch to 
SCANNING state. The selected drone then scans 
the entire disaster area with its on-board sensors and 
makes an initial estimation of the fire zones that are 
detected by the sensors.  (note: not all fire zones are 
detected during the scanning due to sensors’ sensing 
ranges). 

3. SEARCHING: Drones begin to explore a subsection 
of the entire area to detect and arrive at the tagged 
fire zone. 

4. APPROACHING: Drones move to the disaster area 
for helping to figure it out quickly. 

5. MAPPING: Drones engage in mapping the fire zone 
by tracking/tracing the boundary of the zone. 

6. CHARGING: Drones fly to the designated recovery 
zones to recharge their batteries. 

7. DEAD: Drones are destroyed or become 
inoperational due to explosion (by fire), crash (by 
terrain), or depletion of the battery.  

 Governed by SwarmSense, each drone changes its state 
according to the algorithm’s state transition conditions as  

 
 

 



 
 

 Figure 3. Illustration of the ‘Initial Search Module’ in action  
 

 
 

 Figure 4. Another search pattern to replace Voronoi diagram  
 
well as the shared information provided in real time by each 
and every drone during the scenario execution as shown in 
Figure 2. 
 
2.3. SwarmSense in AMASE 
 
 SwarmSense performs performance evaluation in AMASE 
simulation. SwarmSense controls the behavior of the drones  
and the collaboration among them in AMASE, which has 
realistic characteristics and is to the actual environment. It is 
able to address and prove performance with weather changes, 
drones' batteries, and their physical defects (broken or 
missing) through various scenarios in AMASE. Like the real 
world, in AMASE, wind direction and intensity are changed 
from time to time, but SwarmSense can solve wind problems 
flexibly. SwarmSense allows to define and operate a method 
that works in AMASE through 4 modules which are ‘Initial 
Searching Module’, ‘Firezone Scanning Module’, ‘Terrain 
Following Module’, ‘Firezone Mapping Module’. We will 
cover these later. 
 
2.3.1 Initial Searching Module using patterns 
  
 To cover the entire disaster area using the available resources 
(number of drones and battery lives) as efficiently and fast as 
possible, the entire disaster area should be divided with 
similar interval based on drone’s start point [4], [5], [6]. So 
‘Initial Searching Module (ISM)’ uses Voronoi diagram that 
is a partitioning of a plane into regions based on distances to 
points [7], [8]. Upon the beginning of the scenario, each 
drone activates ISM. To find the most resource- and time-
efficient path for each drone, the entire area is divided into 
smaller triangle areas by the Voronoi diagram using the entire 
area’s edges and the recovery zone centers, and each triangle 
area is assigned a drone. This drone then flies towards the 
center of the assigned triangle area. 

 
 

 Figure 5. Voronoi diagrams of 20 points  
 
 Figure 3 illustrates this process. From the left, the center of 
each recovery zone is mapped to the center of a region 
determined by the Voronoi algorithm (If the positions of the 
recovery zones are parallel or vertical, the Voronoi diagram 
cannot be applied and a different pattern is applied like Figure 
4). This is the concept of the Voronoi diagram we apply. 
Within the keep in zone, each recovery zone must efficiently 
distribute the area surveyed by the drones. We assumed that 
the points of Figure 5 are recovery zones and that the wide 
rectangle surrounding all points is a keep in zone. If a polygon 
assigned to each point (recovery zone) is searched 
appropriately by the drones in the recovery zone, the big 
problem can be a small problem. The drone's wide area search 
problem is broken down into smaller problems, which can 
effectively shorten the time for the drones to find the firezone. 
From this, a group of triangle regions are created.  
 
2.3.2 Firezone Scanning Module 
 
 Searching for an extremely large disaster area with a small 
number of battery-powered drones without knowing the 
hotspot locations can lead to significant waste of the 
resources, and therefore, predicting the direction of likely fire 
zones using the onboard sensor is highly effective. So, a 
single drone per recovery zone is randomly selected to 
execute the ‘Firezone Scanning Module (FSM)’. The FSM is 
needed to utilize the onboard sensor capable of scanning the 
entire disaster area up to its sensing range. Any firezone 
detected during this scanning is stored and shared with all 
other drones for reducing the time a designated drone takes 
to arrive at the zone for zone mapping. All drones in each 
scenario have EO and HazardzoneDetect sensor. EO is a 
camera sensor, HazardzoneDetect sensor can detect firezone 
and smokezone which are defined in AMASE. FSM uses a 
HazardzoneDetect sensor.  

 

  



 
 

 Figure 6. Problem of sensor  
 

 
 

 Figure 7. Refinement of the shared information 
 
A Hazardzone Detect sensor is used to detect smokezone 
which could be a hint of firezone. And the sensor’s range for 
smokezone is longer than for firezone. Using this feature, we 
can estimate initial firezone location. As explained before, 
FSM selects one drone randomly in each recovery zone. The 
selected drones are raised up to 3500m altitude to scan as far 
as possible and set gimbal’s elevation value to -3. The values 
are selected by experiments. And the selected drones start to 
scan the entire disaster area. While scanning, if smokezone is 
detected, drones store the detected points. The points are not 
actual smokezone points, but sensor’s center point.  Figure 6 
shows a polygon of the detected points. We can know the 
direction of smokezone but can’t know exactly where it is. 
So, the selected drones need to refine the polygon by sharing 
the collected information to each other. More overlapped and 
predicted smokezone tend to have higher accuracy, so in 
terms of the number of overlapped drones estimate an initial 
firezone location Figure 7. According to Figure 8, we can 
check the performance of FSM. On average, the firezone 
detection ratio is increased 37% more. In wildfire where the 
initial suppression is important, the fact that half of firezones 
is detected in 20min would be good news. 
 
2.3.3 Terrain Following Module using stair algorithm 
 
 AMASE can apply the actual terrain elevation with data 
form. When the drones are performing a search or scanning 
mission, they recognize that the drones hit the terrain when 
the height of the drones is less than the current altitude. As 
soon as the drones collide with the terrain, the drones 
disappear in the AMASE simulation and lose one drones. In 
order to maintain a safe distance between the drone and the 
terrain (to avoid the crash), we employ ‘Terrain Following 
Module (TFM)’ [9], [10]. The TFM is used prevent itself 
from crash due to the challenging terrain conditions such as 

 
 

 Figure 8. Comparison Metric1 between w/o FSM and w/ FSM  
 

 
 

 Figure 9. calculated points from stair algorithm  
 

steep and sudden ascending and descending slopes [11]. 
 To address this challenge, the TFM divides the drone’s 
planned path into short segments and calculates the starting 
and ending points of the drone’s ascending and descending as 
well as its slopes. We used stair algorithm to calculate these 
points. Stair algorithm can be used to obtain an efficient route 
that prevents the drone from colliding with the terrain 
(Figure.9). This algorithm is divided into 6 steps. 1) Divide 
the entire route into section of equal length {deltaR}; 2) For 
the ascent case, select the first point of the next section as a 
node; for descent select the end point of the current section as 
the node; 3) For ascent, join the node with the current section 
by a line with a slope equal to the rate of climb vehicle; 4) 
For descent, find the intersection point of a line passing 
through the descent node point with the next section; 5) In a 
Valley where the terrain elevation decreases and then 
increases again, set specified gap between descent and the 
next ascent; 6) For the last node point which could be the 
landing point, find the intersection of a line joining the last 
node to the previous section.  
 With this algorithm, we calculated the waypoints the drones 
would follow, and as a result, the drone that traveled along 
that waypoint significantly reduced the probability of being 
destroyed due to the terrain altitude. As a shown Figure 10, 
we have demonstrated that no drone is destroyed due to 
terrain. 

 

 

 

 



 
 

Figure 10. Number of Survival Drones by Time 
 

 
 

Figure 11. The result of ‘Area MAPPING Module’ 
 
2.3.4 Firezone Mapping Module 
 
 It required score to represent the performance of the 
algorithm in objective value. The AMASE simulation scales 
according to the ratio of how much the drones cover the area 
of the firezone. The drones search the entire map area and 
firezone Mapping Module is run. ‘Firezone Mapping Module 
(FTM)’ is used to approximate the current firezone area. If 
drones detect the same firezone while searching the assigned 
area, they start MAPPING the boundary of the zone using the 
onboard sensor by changing its state to ‘MAPPING’. If a 
drone stays inside the zone over 5 seconds, it is destroyed by 
the fire to expedite the zone mapping (MAPPING), the 
drones at the ‘MAPPING’ state requests drones at ‘INITIAL’ 
and ‘SEARCHING’ states to join them for assisting the 
mapping (MAPPING). Those drones selected to participate 
in the ongoing mapping change the state to 
‘APPROACHING’ and fly towards the zone. Figure 11 
shows before and after FTM. 
 

3. RESULT 
 
 We have developed SwarmSense to improve three specific 
Metrics. (i) firezone detection ratio (percentage of the 
firezones detected by the drones with no prior knowledge of 
their locations); (ii) firezone mapping precision under 
changing constantly due to dynamic weather conditions; and 
(iii) drone mission completion ratio (the number of drones  

 
 

Figure 12. Total result 
 

 
 

Figure 13. Total result 
 

completing the entire scenario without being destroyed by 
fires or terrain). Figure 12 and Figure 13 are a summary of 
the results collected from the experiments conducted with the 
ten scenarios. 
 

4. DISCUSS 
 
 Defining a lot of rules and state of drone, the drones share 
their information and we can check doing coordination and 
collaboration automatically to solve problems appropriately 
based on that information. We solved this issue by using rule-
based strategy through current state information. In addition 
to this, defining reward according to action to figure out 
disaster and entity is our remaining problem. Solving these 
kinds of problems by setting discovering of hazard zone and 
entity to positive reward and time cost and damage to drones 
to negative reward is also our remaining problems. 
 

5. CONCLUSION 
 
 This work presented a new collaborative navigation 
algorithm for a group of drones so that we control drones to 
effectively coordinate and share information for disaster 
response and management applications such as wildfires. 
Working with a simulation called AMASE, SwarmSense 
gives the drones a state that defines their specific behavior, 
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and the drones solve the problem through collaboration and 
data sharing. In the initial search module, the Voronoi 
diagram was modified to suit the SwarmSense, so the area 
was divided to perform that the drones search efficiently 
when the scenarios started. It causes that the drones speed up 
finding firezones. Next, the firezone scanning module allows 
the drones to find their position without touching the firezone 
and perform their mission quickly. Also, the terrain following 
module improved the survival ability of the drones by 
applying the stair algorithm to prevent the drones from hitting 
the terrain altitude. The Firezone Mapping Module 
maximizes the score at AMASE by preventing the drones 
from entering the firezone and maximizing the area covered 
by the drones. 
 

6. FUTURE WORK 
 
 There are a few points to improve and to adapt 
Reinforcement Learning (RL) algorithm. First, in terms of 
coordination between drones, all drones share each other all 
collected information of the entire disaster area to narrow 
down the area that needs to search. Also, all drones know 
others location and state, so can assign the next zone to go 
like firezone, smokezone or the areas that need to search by 
itself when the number of drones or the number of zones is 
changed. For example, if a drone detects a new firezone, all 
drones decide where to go based on current zones location 
and other drones’ location. For now, to focus on firezone 
mapping precision, drones didn’t charge own battery. But in 
reality, to maintain the number of available drones in mission 
is important, so batteries should be charged by checking 
progress of mission, other drone’s battery state. Next step is 
solving this problem using Reinforcement Learning (RL) 
algorithm. These days, RL has been used for finding new 
solution which is what people can’t find. Also, Deep 
Learning can be used in finding a function that people are 
hard to find. This work has many problems that we can’t 
define all rules. We introduced many modules that solve each 
problem we defined; we also can think about RL approach to 
solve the problems. For tracking fire zone, there are many 
possible ways to decide drone’s angle of incidence and 
direction. We are impossible to make this formula. And wind 

also affects drone’s movement and position of each zone (fire 
and smoke). Drones have to change their direction to go as 
the wind blows. In the environment that has wind information 
as state and drone’s direction, speed as action, well trained 
RL agent can solve this problem. RL can also solve 
coordination issue. When two drones are tracking fire zone, 
they can find optimal tracking solution, communicating with 
each other. States will be drone’s status, being assumed all 
communications are possible. We can also do end to end 
training approaches to find new solutions. But that is the case, 
we will have to use elaborated calculated reward function. 
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