
Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

A GRAPHICAL APPROACH TO FPGA PROGRAMMING

Christian Amadasun (National Instruments, Austin, Texas, United States;

christian.amadasun@ni.com)

ABSTRACT

Programming of Field Programmable Gate Arrays (FPGAs)

has long been the domain of engineers with VHDL or

Verilog expertise. FPGA’s have moved from being simple

glue logic chips to replacing application specific integrated

circuits (ASICs) and processors for signal processing and

control applications. FPGA’s have caught the attention of

algorithm developers and communication researchers, who

want to use FPGA’s to instantiate systems or implement

DSP algorithms. These efforts however, are often stifled by

the complexities of programming FPGA’s. RTL

programming in either VHDL or Verilog is generally not a

high enough level of abstraction needed to represent the

world of signal flow graphs and complex signal processing

algorithms. This paper describes the features of the

LabVIEW FPGA environment and how graphical

programming makes for a robust FPGA programming

platform. This paper assumes a general familiarity with

FPGA’s and LabVIEW or other programming languages

such as C, C++ or Java.

1. INTRODUCTION

NI LabVIEW employs Graphical “G” programming.

Graphical programming allows the user to describe a

program with a dataflow representation. Dataflow is well

suited for signal processing algorithms. Such algorithms use

arithmetic derived from linear systems theory to process data

streams. Dataflow semantics are natural for expressing the

block diagrams used to describe signal processing

algorithms. As an example let’s take a basic difference

equation:

y[i]-b1y[i-1]-b2y[i-2]-b3y[i-3]=a0x[i]+a1x[i-1]+

a2x[i-2]+a3x[i-3]

Difference equations like the one above help in

understanding and manipulating LTI systems such as FIR

and IIR filters. Such filters are not easily implemented using

text based codes such as VHDL and Verilog. Graphically in

LabVIEW the above sequence can be implemented as

shown in Figure 1.

Figure 1. LabVIEW Block diagram for a Difference Equation

In the diagram above the transformation for a unit time

delay is done using a For Loop with shift registers. DSP

systems are also often described by signal flow diagrams

like the one below:

Figure 2. Signal Flow graph of a Difference Equation

One could convert signal flow diagrams into LabVIEW

block diagrams by applying some simple transformations as

show below

Table 1. Signal Flow to LabVIEW Diagram Conversion

Signal Flow Element LabVIEW Equivalent

199

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

This graphical approach to DSP is far more intuitive

than any text based alternative. The LabVIEW FPGA

module is an add-on package to NI LabVIEW and extends

G programming to FPGA’s. LabVIEW FPGA provides an

abstraction from RTL and employs a graphical block

diagram approach to programming. Graphical programming

is well suited for expressing the parallelism inherent to

FPGA’s and the timing explicit to DSP algorithms. Under

the hood, LabVIEW FPGA uses code generation techniques

to synthesize the graphical development environment to

FPGA hardware. Tight integration between LabVIEW

FPGA and NI FPGA hardware means that algorithm

developers can focus squarely on developing their

algorithms and not get bogged down by the complexities of

digital hardware development.

 The rest of the paper is organized as follow; FPGA

Programming, debugging techniques, compilation and

summary.

2. FPGA PROGRAMMING

In this section programming in the LabVIEW FPGA

environment is introduced. The starting point for this is the

LabVIEW Project Explorer Window. You must use a

project to build FPGA applications. The LabVIEW Project

Explorer window is used to manage the components of an

FPGA application. Figure 3 shows the Project Explorer

window and its various components including the FPGA VI,

host VI, FPGA target, FPGA I/O, FPGA FIFOs and FPGA

target clocks.

2.1. Project Explorer components

The FPGA Target in the figure above is the NI PXIe-7965R

which uses a Virtex 5 sx95t FPGA. The VI shown

underneath this target runs on the FPGA. The 40 MHz

Onboard Clock is the base clock. A base clock is a digital

signal existing in the hardware and is used to clock the

FPGA application. LabVIEW uses the base clock properties

when setting timing constraints on circuits generated from

the FPGA VI during compilation. The DAC Clock is a

derived clock created from the 40 MHz clock.

2.2. FPGA VI

The function palette of a LabVIEW FPGA VI contains a

subset of the functions found in standard LabVIEW along

with functions specific to FPGA hardware like FPGA I/O

nodes, single-cycle timed loop, fixed-point arithmetic and

integration nodes for third party IP.

Figure 3. LabVIEW Project Explorer Window

Building a LabVIEW FPGA VI is akin to building one

in standard LabVIEW; you will need to connect different

function-nodes together by drawing wires. It is important to

note that unlike a PC, FPGA have a limited set of resource,

very function or VI you add to the block diagram of an

FPGA VI uses a certain number of logic cells on the FPGA.

If the FPGA VI design exceeds the number of available

logic cells, the code will produce compilation errors.

Figure 3. Simple LabVIEW FPGA VI (block diagram view)

The figure 3 above shows a simple VI that performs a

simple mathematical operation. While the FPGA is running

the input (a Control) and the Output (an Indicator) can be

monitored on the front panel to ensure correct operation.

Controls and Indicators are mapped to registers on the

FPGA hardware and will only display the current values in

that register. Connecting FPGA I/O to FPGA logic is a

simple as connecting a wire from the FPGA I/O node to

some FPGA logic as showed below.

200

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

Figure 4. Using a Digital FPGA I/O Node

In the figure above the value of the digital input 0 is

assigned to the Mod1/DIO indicator. The FPGA I/O

available on the LabVIEW FPGA VI is dependent on the

FPGA Target being used and can support digital, digital port

and analog I/O. Analog I/O supports unsigned, signed and

fixed-point data types.

Figure 5. Using a Analog FPGA I/O Nodes

In the Figure above the value from the Analog Input

channel AI0 is read and multiplied by a scaling factor, then

bit shifted and the result is outputted on the Analog Output

channel AO0.

2.3 Parallel Loops Execution

FPGA’s allow for true parallel code execution. Figure 6

shows how two separate section of code might get mapped

on FPGA hardware. Graphical programming promotes

parallel code architectures because they are inherently

described in the block diagram. The loops shown in Figure 7

run in parallel because there are no shared resources

between the two loops. Each loop is then free to run at the

rates determined by the Loop Timer parameter. A shared

resource is any LabVIEW node that is accessed by multiple

objects in the FPGA VI. Both the analog input and the

analog output in Figure 8 are shared between the two loops.

Sharing resources between two different tasks or loops can

affect the deterministic execution of the tasks, even when

they are in parallel.

2.4 Data Transfer on an FPGA VI

LabVIEW FPGA provides resources that can be shared by

multiple processes. These resource may allow for lossy and

lossless data transfer. Table 1 lists the data transfer methods

available using LabVIEW FPGA, for brevity only FIFOs are

discussed in detail.

Figure 6. Function mapping on FPGA Hardware

Figure 7. Parallel loops

Figure 8. Shared Resources in Parallel loops

2.4.1 FPGA FIFO’s

FIFO’s are by far the most frequently used method for

transferring data between parallel loops. Like Memory

items, write and read methods exists, however unlike the

later FIFOs do not have an address parameter. The Write

and Read functions are shown in Figure 9.

201

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

Figure 9. FIFO Write and Read

Table 1. Data Transfer Methods

Transfer Method FPAG Resource Lossy?

Variables Logic Yes

Memory Items Memory Yes

FIFOs (Flip-Flop) Logic No

FIFOs (Look Up

Table)

Logic No

FIFOs (Block

Memory)

Logic and Memory No

The inputs Element and Timeout are respectively the

data element to written or read and the number of ticks the

function waits for space if the FIFO is full. The output

Timed Out? Is True if attempt to write failed. Does not

overwrite or add new element. FIFO transfer may be lossy if

write times out. If you set the Timeout value to -1, then the

node will wait indefinitely. The default Timeout value is 0,

resulting in no wait.

Figure 10. FIFO Write Overflow Handling

In the figure above the analog input node writes in

current value into the FIFO, the loop will stop executing if

the FIFO times outs. Overflow and Underflow can occur

when using FIFOs it is necessary to be able to detect and

handle each appropriately.

When a Write loop executes faster than the Read loop

the FIFO is filled and the FIFO Write method times out.

Data can no longer be written to the FIFO until space is

available. Space can be created by reading the data or

resetting the FIFO. Hence Data is lost until space is made

available. When the Write loop executes slower than read

loop, underflow occurs. The FIFO is empty and the FIFO

Read method times out.

LabVIEW FPGA allows for the use of Direct Memory

Access FIFO’s for data transfer between a host (running

Windows or a Real Time OS) and the FPGA VI. This will

be discussed in more detail in the basic host integration

section.

2.5 Enforcing Dataflow in FPGA

LabVIEW FPGA uses three components to maintain this

dataflow paradigm. First, the node has logic corresponding

to its function. In the figure below, notice the Boolean Not

function and its associated logic. The next component

needed for dataflow is synchronization. This component

registers the outputs of the function in order to isolate the

logic from timing uncertainties. Finally additional logic

referred to as the enable chain coordinates the dataflow by

validating the inputs and outputs.

Figure 11. Dataflow enforcement using enable chain

The figure above shows a simple VI that has a Boolean

control, a Not function and a Digital Output function. The

Boolean control has some logic associated with the data

register to retrieve data from a host application. A flip-flop

links the enable chain. The Not function has the logic

associated with the function itself, a synchronization flip-

flop, and an enable chain flip-flop. The Digital Output

function has a synchronization flip-flop and an enable chain

flip-flop. When the program runs, the enable line goes high

to enable the synchronization flip-flop associated with the

Boolean control. Meanwhile, a rising edge of the clock

pushes the data from the register through the flip-flop.

Downstream, the previous values are held on the outputs of

the flip-flops. During the next rising edge of the clock, the

synchronization flip-flop associated with the Not function

passes the new value through. On the third rising edge of the

clock, the enable in of the digital output is high and the new

value is pushed through the flip-flop to the I/O pins. The

data is synchronized using a flip-flop that pushes the data

through the flip-flop on the first rising edge of the clock.

202

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

Due to the enable chain overhead, each function or VI

takes a minimum of one clock cycle. Some functions, such

as analog input operations, can take hundreds of clock

cycles depending upon the complexity of the operation and

hardware limitations, While loops take 2 clock ticks.

Figure 13. Dataflow Clock Tick Execution

Use a single-cycle Timed Loop to convert the above 12

clock-cycle While Loop Into this 1 clock-cycle Single Cycle

Timed Loop. LabVIEW automatically optimizes code inside

an SCTL.

Figure 14. Single Cycle Timed Loop (SCTL)

The SCTL accomplishes this by removing the enable

chain registers from code inside the SCTL. All code in the

SCTL finishes executing within one tick of the specified

FPGA clock and consumes less space on the FPGA.

Within a loop, you can split your code into different

loop iterations to reduce the duration of each iteration, this

process is called pipelining. The figure below illustrates two

different ways to achieve pipelining

 Use shift registers to pass data to the next piece of

code

 Use Feedback nodes to maintain the look and feel

of the original application

Figure 14. Two ways of Pipelining

Feedback Nodes like shift registers are implemented as

registers and requires logic resources in proportion to the

width of the data type. When you implement a pipeline, the

output of the final step lags behind the input by the number

of steps in the pipeline and the output is invalid for each

clock cycle until the pipeline fills. The number of steps in a

pipeline is called the pipeline depth, and the latency of a

pipeline, measured in clock cycles, corresponds to its depth.

For a pipeline of depth N, the result is invalid until the Nth

loop iteration, and the output of each valid loop iteration

lags behind the input by N-1 iterations.

Figure 15. Pipeling the VI in figure 3

Pipelining can also be done in single-cycle timed loops.

2.6 BASIC HOST INTEGRATION

LabVIEW FPGA provides an interface to the FPGA VI

running on the FPGA.With Programmatic FPGA Interface

Communication, you programmatically monitor and control

an FPGA VI with a separate host VI running on the host

computer. You might write a host VI to send information

between the host computer and the FPGA target for the

following reasons

 You want to do more data processing than you can

fit on the FPGA.

 You need to perform operations not available on

the FPGA target, such as floating-point arithmetic.

 You want to create a multi-tiered application with

the FPGA target as a component of a larger system

When you use Programmatic FPGA Interface

Communication, the FPGA VI runs on the FPGA target, and

the host VI runs on the host computer, as shown in the

following illustration.

Figure 15. Host-side FPGA VI Interface Nodes

The Open FPGA VI Reference establishes communication

with a FPGA VI from the host VI. The Read/Write Control

nodes allows write and read access to the values in the

1

203

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

control and indicators respectively of the FPGA VI. The

Invoke nodes allows you to configure, start, write and read

from DMA FIFO’s as well as toggle and read interrupt lines.

The Close FPGA VI Reference terminates communication

with the FPGA VI.

2.7 Third party IP Integration

LabVIEW FPGA provides an IP Integration Node that

allows the user import pre-existing code. This node wraps

Xilinx’s OR customized VHDL modules based on .xco or

.vhd files and supports both cycle accurate co-simulation

and FPGA hardware execution. A detailed discussion of the

IP Integration Node is above the scope of this paper.

3. DEBUGGING FPGA CODE

Development techniques for FPGA programming are

significantly different than though for PC application

development. The FPGA compile process can take a

significant amount of time, also once the code is running in

hardware there is no ability to probe, single-step, process

highlight, set breakpoints, and more. For these reasons it is

impossible to employ a “code and fix” method of

programming, one technique is to do more simulation on the

development computer to avoid unnecessary compiles due to

programming errors.

 Because you are just using LabVIEW code when

making FPGA logic, it is always possible to execute your

VIs on the host computer. This means you can use all the

debugging features of LabVIEW and you do not have to

wait for it to compile every time you need to test some logic.

Additionally, you can create a Test-bench VI to assert the

inputs that would normally be connected to the outside

world via FPGA I/O and capture the outputs for analysis and

verification. Finally, you can run the host program

simultaneously with the FPGA code including simulated

registers and DMA first-in-first-out (FIFO) memory buffers.

You cannot test certain behavior, such as timing and

determinism.

4. FPGA COMPILE

The LabVIEW FPGA module compiles your LabVIEW

application to FPGA hardware using an automatic multi-step

process.

Figure 16. Compile stages

The first step in the compilation process is the

generation of intermediate files. For this process, LabVIEW

parses your block diagram and converts the code to text-

based VHDL. The Xilinx ISE compiler tools are then

invoked and the VHDL code is optimized, reduced, and

synthesized into a hardware circuit realization of your

LabVIEW design. This process also applies timing

constraints to the design and tries to achieve an efficient use

of FPGA resources.

A great deal of optimization is performed during the

FPGA compilation process to reduce digital logic and create

an optimal implementation of the LabVIEW application.

Then the design is synthesized into a highly optimized

silicon implementation that provides true parallel processing

capabilities with the performance and reliability of dedicated

hardware.

The end result is a bit stream file that contains the gate

array configuration information. When you run the

application, the bit stream is loaded into the FPGA chip and

used to reconfigure the gate array logic. The bit stream can

also be loaded into nonvolatile Flash memory and loaded

instantaneously when power is applied to the target. There is

no operating system on the FPGA chip, however execution

can be started and stopped using enable-chain logic that is

built into the FPGA application.

After code generation completes with no errors, the

Compilation Status window appears. This is the main

window that guides you through the compile. It features a

progress bar and some basic timestamps and VI info. As the

compile continues, alerts at the bottom of the window tell

you when a new report is done. After the “Synthesis” step,

you see “Estimated Device Utilization” and “Estimated

Timing” reports. Both of these reports come early in the

compile so you can cancel the compile in a timely fashion if

the reports indicate with high confidence that the compile

will over-map your FPGA hardware or not meet your timing

constraints.

5. SUMMARY

LabVIEW FPGA side-steps the need for VHDL or Verilog

knowledge and allows novices and experts alike take

advantage of FPGA hardware. LabVIEW FPGA employs G

programming and provides a high enough level of

abstraction for translating signal processing algorithms to

code that can run on hardware. The environment provides

power debug and compilation features to helps ease FPGA

application development

204

http://www.ni.com/fpga

