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ABSTRACT 

 

Programming of Field Programmable Gate Arrays (FPGAs) 

has long been the domain of engineers with VHDL or 

Verilog expertise. FPGA’s have moved from being simple 

glue logic chips to replacing application specific integrated 

circuits (ASICs) and processors for signal processing and 

control applications. FPGA’s have caught the attention of 

algorithm developers and communication researchers, who 

want to use FPGA’s to instantiate systems or implement 

DSP algorithms. These efforts however, are often stifled by 

the complexities of programming FPGA’s. RTL 

programming in either VHDL or Verilog is generally not a 

high enough level of abstraction needed to represent the 

world of signal flow graphs and complex signal processing 

algorithms. This paper describes the features of the 

LabVIEW FPGA environment and how graphical 

programming makes for a robust FPGA programming 

platform. This paper assumes a general familiarity with 

FPGA’s and LabVIEW or other programming languages 

such as C, C++ or Java. 

 

1. INTRODUCTION 

 

NI LabVIEW employs Graphical “G” programming. 

Graphical programming allows the user to describe a 

program with a dataflow representation. Dataflow is well 

suited for signal processing algorithms. Such algorithms use 

arithmetic derived from linear systems theory to process data 

streams. Dataflow semantics are natural for expressing the 

block diagrams used to describe signal processing 

algorithms. As an example let’s take a basic difference 

equation: 

 

y[i]-b1y[i-1]-b2y[i-2]-b3y[i-3]=a0x[i]+a1x[i-1]+ 

a2x[i-2]+a3x[i-3] 

 

Difference equations like the one above help in 

understanding and manipulating LTI systems such as FIR 

and IIR filters. Such filters are not easily implemented using 

text based codes such as VHDL and Verilog. Graphically in 

LabVIEW the above sequence can be implemented as 

shown in Figure 1. 

 

 

 

 

 
Figure 1. LabVIEW Block diagram for a Difference Equation 

 

In the diagram above the transformation for a unit time 

delay is done using a For Loop with shift registers. DSP 

systems are also often described by signal flow diagrams 

like the one below: 
 

 
Figure 2. Signal Flow graph of a Difference Equation 

 

One could convert signal flow diagrams into LabVIEW 

block diagrams by applying some simple transformations as 

show below 

 
Table 1. Signal Flow to LabVIEW Diagram Conversion  

Signal Flow Element LabVIEW Equivalent 
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This graphical approach to DSP is far more intuitive 

than any text based alternative. The LabVIEW FPGA 

module is an add-on package to NI LabVIEW and extends 

G programming to FPGA’s. LabVIEW FPGA provides an 

abstraction from RTL and employs a graphical block 

diagram approach to programming. Graphical programming 

is well suited for expressing the parallelism inherent to 

FPGA’s and the timing explicit to DSP algorithms. Under 

the hood, LabVIEW FPGA uses code generation techniques 

to synthesize the graphical development environment to 

FPGA hardware. Tight integration between LabVIEW 

FPGA and NI FPGA hardware means that algorithm 

developers can focus squarely on developing their 

algorithms and not get bogged down by the complexities of 

digital hardware development.  

 

       The rest of the paper is organized as follow; FPGA 

Programming, debugging techniques, compilation and 

summary. 

 
2. FPGA PROGRAMMING 

 

In this section programming in the LabVIEW FPGA 

environment is introduced. The starting point for this is the 

LabVIEW Project Explorer Window. You must use a 

project to build FPGA applications. The LabVIEW Project 

Explorer window is used to manage the components of an 

FPGA application. Figure 3 shows the Project Explorer 

window and its various components including the FPGA VI, 

host VI, FPGA target, FPGA I/O, FPGA FIFOs and FPGA 

target clocks.  

 

2.1. Project Explorer components 

 

The FPGA Target in the figure above is the NI PXIe-7965R 

which uses a Virtex 5 sx95t FPGA. The VI shown 

underneath this target runs on the FPGA. The 40 MHz 

Onboard Clock is the base clock. A base clock is a digital 

signal existing in the hardware and is used to clock the 

FPGA application. LabVIEW uses the base clock properties 

when setting timing constraints on circuits generated from 

the FPGA VI during compilation. The DAC Clock is a 

derived clock created from the 40 MHz clock.  

 

2.2. FPGA VI 

 

The function palette of a LabVIEW FPGA VI contains a 

subset of the functions found in standard LabVIEW along 

with functions specific to FPGA hardware like FPGA I/O 

nodes, single-cycle timed loop, fixed-point arithmetic and  

integration nodes for third party IP.  

 

 
Figure 3. LabVIEW Project Explorer Window 

 

Building a LabVIEW FPGA VI is akin to building one 

in standard LabVIEW; you will need to connect different 

function-nodes together by drawing wires. It is important to 

note that unlike a PC, FPGA have a limited set of resource, 

very function or VI you add to the block diagram of an 

FPGA VI uses a certain number of logic cells on the FPGA. 

If the FPGA VI design exceeds the number of available 

logic cells, the code will produce compilation errors. 

 

Figure 3. Simple LabVIEW FPGA VI (block diagram view) 

The figure 3 above shows a simple VI that performs a 

simple mathematical operation. While the FPGA is running 

the input (a Control) and the Output (an Indicator) can be 

monitored on the front panel to ensure correct operation. 

Controls and Indicators are mapped to registers on the 

FPGA hardware and will only display the current values in 

that register. Connecting FPGA I/O to FPGA logic is a 

simple as connecting a wire from the FPGA I/O node to 

some FPGA logic as showed below.  
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Figure 4. Using a Digital FPGA I/O Node 

In the figure above the value of the digital input 0 is 

assigned to the Mod1/DIO indicator. The FPGA I/O 

available on the LabVIEW FPGA VI is dependent on the 

FPGA Target being used and can support digital, digital port 

and analog I/O. Analog I/O supports unsigned, signed and 

fixed-point data types. 

 

Figure 5. Using a Analog FPGA I/O Nodes 

In the Figure above the value from the Analog Input 

channel AI0 is read and multiplied by a scaling factor, then 

bit shifted and the result is outputted on the Analog Output 

channel AO0.  

2.3 Parallel Loops Execution 

FPGA’s allow for true parallel code execution. Figure 6 

shows how two separate section of code might get mapped 

on FPGA hardware. Graphical programming promotes 

parallel code architectures because they are inherently 

described in the block diagram. The loops shown in Figure 7 

run in parallel because there are no shared resources 

between the two loops. Each loop is then free to run at the 

rates determined by the Loop Timer parameter. A shared 

resource is any LabVIEW node that is accessed by multiple 

objects in the FPGA VI. Both the analog input and the 

analog output in Figure 8 are shared between the two loops. 

Sharing resources between two different tasks or loops can 

affect the deterministic execution of the tasks, even when 

they are in parallel.  

2.4 Data Transfer on an FPGA VI 

LabVIEW FPGA provides resources that can be shared by 

multiple processes. These resource may allow for lossy and 

lossless data transfer. Table 1 lists the data transfer methods 

available using LabVIEW FPGA, for brevity only FIFOs are 

discussed in detail. 

 

Figure 6. Function mapping on FPGA Hardware 

 

Figure 7. Parallel loops 

 

Figure 8. Shared Resources in Parallel loops 

2.4.1 FPGA FIFO’s 

FIFO’s are by far the most frequently used method for 

transferring data between parallel loops. Like Memory 

items, write and read methods exists, however unlike the 

later FIFOs do not have an address parameter. The Write 

and Read functions are shown in Figure 9. 
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Figure 9. FIFO Write and Read 

Table 1. Data Transfer Methods 

Transfer Method FPAG Resource Lossy? 

Variables Logic Yes 

Memory Items Memory Yes 

FIFOs (Flip-Flop) Logic No 

FIFOs (Look Up 

Table) 

Logic No 

FIFOs (Block 

Memory) 

Logic and Memory No 

The inputs Element and Timeout are respectively the 

data element to written or read and the number of ticks the 

function waits for space if the FIFO is full. The output 

Timed Out? Is True if attempt to write failed. Does not 

overwrite or add new element. FIFO transfer may be lossy if 

write times out. If you set the Timeout value to -1, then the 

node will wait indefinitely. The default Timeout value is 0, 

resulting in no wait. 

 

Figure 10. FIFO Write Overflow Handling 

In the figure above the analog input node writes in 

current value into the FIFO, the loop will stop executing if 

the FIFO times outs. Overflow and Underflow can occur 

when using FIFOs it is necessary to be able to detect and 

handle each appropriately.  

When a Write loop executes faster than the Read loop 

the FIFO is filled and the FIFO Write method times out. 

Data can no longer be written to the FIFO until space is 

available. Space can be created by reading the data or 

resetting the FIFO. Hence Data is lost until space is made 

available. When the Write loop executes slower than read 

loop, underflow occurs. The FIFO is empty and the FIFO 

Read method times out. 

LabVIEW FPGA allows for the use of Direct Memory 

Access FIFO’s for data transfer between a host (running 

Windows or a Real Time OS) and the FPGA VI. This will 

be discussed in more detail in the basic host integration 

section. 

2.5 Enforcing Dataflow in FPGA 

LabVIEW FPGA uses three components to maintain this 

dataflow paradigm. First, the node has logic corresponding 

to its function. In the figure below, notice the Boolean Not 

function and its associated logic. The next component 

needed for dataflow is synchronization. This component 

registers the outputs of the function in order to isolate the 

logic from timing uncertainties. Finally additional logic 

referred to as the enable chain coordinates the dataflow by 

validating the inputs and outputs. 

 

Figure 11. Dataflow enforcement using enable chain 

The figure above shows a simple VI that has a Boolean 

control, a Not function and a Digital Output function. The 

Boolean control has some logic associated with the data 

register to retrieve data from a host application. A flip-flop 

links the enable chain. The Not function has the logic 

associated with the function itself, a synchronization flip-

flop, and an enable chain flip-flop. The Digital Output 

function has a synchronization flip-flop and an enable chain 

flip-flop. When the program runs, the enable line goes high 

to enable the synchronization flip-flop associated with the 

Boolean control. Meanwhile, a rising edge of the clock 

pushes the data from the register through the flip-flop. 

Downstream, the previous values are held on the outputs of 

the flip-flops. During the next rising edge of the clock, the 

synchronization flip-flop associated with the Not function 

passes the new value through. On the third rising edge of the 

clock, the enable in of the digital output is high and the new 

value is pushed through the flip-flop to the I/O pins. The 

data is synchronized using a flip-flop that pushes the data 

through the flip-flop on the first rising edge of the clock.  
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Due to the enable chain overhead, each function or VI 

takes a minimum of one clock cycle. Some functions, such 

as analog input operations, can take hundreds of clock 

cycles depending upon the complexity of the operation and 

hardware limitations, While loops take 2 clock ticks. 

 

Figure 13. Dataflow Clock Tick Execution 

Use a single-cycle Timed Loop to convert the above 12 

clock-cycle While Loop Into this 1 clock-cycle Single Cycle 

Timed Loop. LabVIEW automatically optimizes code inside 

an SCTL. 

Figure 14. Single Cycle Timed Loop (SCTL) 

 

The SCTL accomplishes this by removing the enable 

chain registers from code inside the SCTL. All code in the 

SCTL finishes executing within one tick of the specified 

FPGA clock and consumes less space on the FPGA. 

 

Within a loop, you can split your code into different 

loop iterations to reduce the duration of each iteration, this 

process is called pipelining. The figure below illustrates two 

different ways to achieve pipelining 

 Use shift registers to pass data to the next piece of 

code 

 Use Feedback nodes to maintain the look and feel 

of the original application 

 

 

 

 

 

Figure 14. Two ways of Pipelining 

Feedback Nodes like shift registers are implemented as 

registers and requires logic resources in proportion to the 

width of the data type. When you implement a pipeline, the 

output of the final step lags behind the input by the number 

of steps in the pipeline and the output is invalid for each 

clock cycle until the pipeline fills. The number of steps in a 

pipeline is called the pipeline depth, and the latency of a 

pipeline, measured in clock cycles, corresponds to its depth. 

For a pipeline of depth N, the result is invalid until the Nth 

loop iteration, and the output of each valid loop iteration 

lags behind the input by N-1 iterations.  

 

 

 

 

 

 

 

 

Figure 15. Pipeling the VI in figure 3 

 

Pipelining can also be done in single-cycle timed loops. 

 

2.6 BASIC HOST INTEGRATION 

 

LabVIEW FPGA provides an interface to the FPGA VI 

running on the FPGA.With Programmatic FPGA Interface 

Communication, you programmatically monitor and control 

an FPGA VI with a separate host VI running on the host 

computer. You might write a host VI to send information 

between the host computer and the FPGA target for the 

following reasons 

 You want to do more data processing than you can 

fit on the FPGA.  

 You need to perform operations not available on 

the FPGA target, such as floating-point arithmetic.  

 You want to create a multi-tiered application with 

the FPGA target as a component of a larger system 

When you use Programmatic FPGA Interface 

Communication, the FPGA VI runs on the FPGA target, and 

the host VI runs on the host computer, as shown in the 

following illustration. 

 

 

 

 

 

 

 

Figure 15. Host-side FPGA VI Interface Nodes 

 

The Open FPGA VI Reference establishes communication 

with a FPGA VI from the host VI. The Read/Write Control 

nodes allows write and read access to the values in the 
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control and indicators respectively of the FPGA VI. The 

Invoke nodes allows you to configure, start, write and read 

from DMA FIFO’s as well as toggle and read interrupt lines.  

The Close FPGA VI Reference terminates communication 

with the FPGA VI. 

 

2.7 Third party IP Integration 

LabVIEW FPGA provides an IP Integration Node that 

allows the user import pre-existing code. This node wraps 

Xilinx’s OR customized VHDL modules based on .xco or 

.vhd files and supports both cycle accurate co-simulation 

and FPGA hardware execution. A detailed discussion of the 

IP Integration Node is above the scope of this paper. 

 

3. DEBUGGING FPGA CODE 

 

Development techniques for FPGA programming are 

significantly different than though for PC application 

development.  The FPGA compile process can take a 

significant amount of time, also once the code is running in 

hardware there is no ability to probe, single-step, process 

highlight, set breakpoints, and more. For these reasons it is 

impossible to employ a “code and fix” method of 

programming, one technique is to do more simulation on the 

development computer to avoid unnecessary compiles due to 

programming errors. 

 

 Because you are just using LabVIEW code when 

making FPGA logic, it is always possible to execute your 

VIs on the host computer. This means you can use all the 

debugging features of LabVIEW and you do not have to 

wait for it to compile every time you need to test some logic. 

Additionally, you can create a Test-bench VI to assert the 

inputs that would normally be connected to the outside 

world via FPGA I/O and capture the outputs for analysis and 

verification. Finally, you can run the host program 

simultaneously with the FPGA code including simulated 

registers and DMA first-in-first-out (FIFO) memory buffers. 

You cannot test certain behavior, such as timing and 

determinism.  

 

4. FPGA COMPILE 

 

The LabVIEW FPGA module compiles your LabVIEW 

application to FPGA hardware using an automatic multi-step 

process.  

Figure 16. Compile stages 

The first step in the compilation process is the 

generation of intermediate files. For this process, LabVIEW 

parses your block diagram and converts the code to text-

based VHDL. The Xilinx ISE compiler tools are then 

invoked and the VHDL code is optimized, reduced, and 

synthesized into a hardware circuit realization of your 

LabVIEW design. This process also applies timing 

constraints to the design and tries to achieve an efficient use 

of FPGA resources.  

 

A great deal of optimization is performed during the 

FPGA compilation process to reduce digital logic and create 

an optimal implementation of the LabVIEW application. 

Then the design is synthesized into a highly optimized 

silicon implementation that provides true parallel processing 

capabilities with the performance and reliability of dedicated 

hardware. 

 

The end result is a bit stream file that contains the gate 

array configuration information. When you run the 

application, the bit stream is loaded into the FPGA chip and 

used to reconfigure the gate array logic. The bit stream can 

also be loaded into nonvolatile Flash memory and loaded 

instantaneously when power is applied to the target. There is 

no operating system on the FPGA chip, however execution 

can be started and stopped using enable-chain logic that is 

built into the FPGA application. 

 

After code generation completes with no errors, the 

Compilation Status window appears. This is the main 

window that guides you through the compile. It features a 

progress bar and some basic timestamps and VI info. As the 

compile continues, alerts at the bottom of the window tell 

you when a new report is done. After the “Synthesis” step, 

you see “Estimated Device Utilization” and “Estimated 

Timing” reports. Both of these reports come early in the 

compile so you can cancel the compile in a timely fashion if 

the reports indicate with high confidence that the compile 

will over-map your FPGA hardware or not meet your timing 

constraints.  

 

5. SUMMARY 

 

LabVIEW FPGA side-steps the need for VHDL or Verilog 

knowledge and allows novices and experts alike take 

advantage of FPGA hardware. LabVIEW FPGA employs G 

programming and provides a high enough level of 

abstraction for translating signal processing algorithms to 

code that can run on hardware. The environment provides 

power debug and compilation features to helps ease FPGA 

application development 
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