

DESIGN AND TESTING OF SPACE TELEMETRY SCA WAVEFORM

Dale J. Mortensen1 (ZIN Technologies, Inc., Brook Park, Ohio, USA; dale.mortensen@zin-tech.com);

Louis M. Handler (NASA Glenn Research Center, Cleveland, Ohio, USA;
Louis.M.Handler@nasa.gov); and

Todd M. Quinn1 (ZIN Technologies; todd.quinn@zin-tech.com)

1 Work performed under contract NAS3-99154.

ABSTRACT

A Software Communications Architecture (SCA)
Waveform for space telemetry is being developed at the
NASA Glenn Research Center. The space telemetry
waveform is implemented in a laboratory testbed consisting
of general purpose processors, FPGAs, ADCs, and DACs.
The radio hardware is integrated with an SCA Core
Framework and other software development tools. The
waveform design is described from both the bottom-up
signal processing and top-down software component
perspectives. Simulations and model-based design
techniques used for signal processing subsystems are
presented. Testing with legacy hardware-based modems
verifies proper design implementation and dynamic
waveform operations.
 The waveform development is part of an effort by
NASA to define an open architecture for space based
reconfigurable transceivers. Use of the SCA as a reference
has increased understanding of software defined radio
architectures. However, since space requirements put a
premium on size, mass, and power, the SCA may be
impractical for today's space ready technology. Specific
requirements for an SCA waveform and other lessons
learned from this development are discussed.

1. INTRODUCTION

The Space Telecommunication Radio System (STRS)
project team at the NASA Glenn Research Center is
currently studying the Software Communications
Architecture (SCA) to support the design effort of an open
architecture for software defined radios in the space
environment. In order to better understand the application
of such an architecture to space-based radios, the STRS
waveform development team is currently working on a
prototype SCA waveform that mirrors the functional
characteristics of current NASA space telemetry [1]. The

waveform’s basic characteristics are QPSK modulation, ½
rate Viterbi coding, and 1 Mbps user data throughput.
 An SDR-3000 development platform, part of the testing
and validation laboratory at NASA Glenn, was utilized for
the waveform development. The platform consists of a
number of PowerPC multipurpose processors, field
programmable gate arrays (FPGAs), digital-to-analog
converters (DACs), analog-to-digital converters (ADCs), a
real-time operating system, the Harris SCA core framework,
and a communication board support package. This platform
was used to transmit and receive signals to other
commercial satellite modems at 70 MHz intermediate
frequency (IF) for testing and validation purposes.
 Both a bottom-up and top-down design approach was
implemented, as described in the next section. Testing and
validation methods and results are described in section 3.
To conclude, a discussion of implications for space-based
radio applications is in section 4. Lessons learned are
included throughout these sections.

2. DESIGN & IMPLEMENTATION

Knowing where to begin the development was a significant
challenge, even with a basic understanding of the SCA.
Developing this SCA waveform required experience in
several different areas, such as middleware, object oriented
embedded programming, FPGA design, digital signal
processing, not to mention space communications. On
occasion industry software engineers were consulted to
supplement the waveform team’s experience and
knowledge. Specifically, during the course of this effort,
the team acquired knowledge in the following areas:
• Use of the software development and monitor tools
accompanying the core framework.
• Use of the interface definition language (IDL) to define
various interfaces for the components of a waveform.
• The SCA domain profile specification and how to
deploy and configure various parts of the waveform.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

• How the core framework uses CORBA and how
CORBA applies to the waveform.
• The process path needed for developing the various
components of the waveform and connecting them together.

The waveform development process followed can be
summarized in the following steps [2]:

1. Identify the functionality that comprises the
operation of the waveform.

2. Identify the interfaces between the components
3. Create and compile IDL for the waveform specific

interfaces (e.g. PullPacket)
4. Write CORBA Servant code
5. Create XML
6. Test and debug

In parallel, the various waveform digital signal processing
functions, such as the modulation mapping, were tested and
debugged in a non-SCA waveform. Then these functions
were integrated with the corresponding SCA waveform
software component.
 The initial development tasks focused on how the
waveform is managed by the SCA core framework, and
how the various sections of the SCA handle deployment and
operation of the waveform. The SCA core framework
provides a Domain Manager, Application Factory and

Application entities for deployment and control of the
waveform. The waveform developer only needs to
concentrate on a set of basic application interfaces such as
Port, PropertySet, Resource and others as described in the
SCA specification. Waveform components are developed
with these base application interfaces and interact with the
SCA deployment and control mechanism through
information provided in the Software Assembly Descriptor
XML file, and other supporting XML files [3].
 Identifying the functionality of the various components
that would comprise the transmit portion of the space
telemetry waveform produced the following four software
components, (as shown in Figure 1):

1. Data Generator – produces internally generated
data patterns, and provides an interface with
external data sources.

2. Encoder – convolutionally at ½ rate and
differentially encodes data.

3. Modulation Mapper – converts the binary data to
modulation symbol samples.

4. Filter & UpConv – performs pulse shaped filtering
and digital up conversion.

To deploy these components within the SCA core
framework, an additional component called the Assembly
Controller is needed. The SCA specification requires that

Figure 1: Transmit SCA software components and interfaces

Domain
Log
Log

Data
Generator

Resource
LogOut

DG_MODE
DG_SOURCE

Modulation
Mapper

Resource
LogOut

MOD_TYPE

PacketIn

Encoder

Resource
LogOut

ENC_CONV_ENABLE
ENC_DIFF_ENABLE

PacketIn

Assembly
Controller

DataGen

Encoder ModMapper

DG_MODE
DG_SOURCE

ENC_CONV_ENABLE
ENC_DIFF_ENABLE

MOD_TYPE
DAC_FILTER_MODE
DUC_OUT_SCALE

DUC_RATE
VIRTEX_NAME

TM1_TYPE

LogOut

Filter & UpConv

Resource
LogOut

DAC_FILTER_MODE
DUC_OUT_SCALE

DUC_RATE
VIRTEX_NAME

TM1_TYPE

DAC

Filter&UpConv

Pull Pull

PPC 7410
Logical Device

FabricWriteChannel

Analog IF

PacketOut RequestOutRequestIn

Data packets

Configuration
and Control

DUC output

Interrupt
signal

FPGA Sands
Logical Device

FabricChannel0

Configuration
(TM1-3300 API)

PacketOut

WriteFabric

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

all external configuration, control and query requests are
relayed by the core framework and processed by the
Assembly Controller. For example, as shown in Figure 1,
the Data Generator is a resource component which has
properties DG_MODE and DG_SOURCE. These
parameters can be set by a user via an external interface that
communicates through the core framework domain
manager. The domain manager passes the information
along to the Assembly Controller. The Assembly Controller
has port connections to the various components to relay the
property values to the proper destinations.
 The Assembly Controller, the Data Generator, the
Encoder and the Modulation Mapper are components that
are to be deployed on general purpose PowerPC processors.
The SCA specification requires that these components
communicate using CORBA. To minimize communication
delays among distributed objects in the CORBA
environment, the four components were collocated on the
same processor. Connections between the components are
achieved by specifying SCA ports on each component.
 A PullPacket interface is defined in IDL to encapsulate
the transfer of a data packet using CORBA. The
PullPacket interface is used by the Modulation Mapper to
transfer packetized data from the Encoder. The Encoder, in
turn transfers data from the Data Generator with the same
type of interface. In IDL, a PullPacketInterface is defined
with a function called pullPacket. An IDL compiler for
C++ is used to create the code to support the
PullPacketInterface within the CORBA communication
environment. The waveform components that support the
PullPacketInterface must implement a pullPacket function.
 The pullPacket function in the Data Generator creates a
packet of data based upon the current DG_MODE setting.
The data packet is passed back to the Encoder which adds
its encoding and then passes the data packet back to the
Modulation Mapper to prepare it for further processing. In
a similar fashion, the interface between the Filter &
UpConv requests a data packet by using a different CORBA
interface called RequestOut.
 Up to this point the waveform components fit nicely
within the SCA core framework because they are to be
deployed on general purpose processors (GPP). The filter
and up converter functions however are deployed and
executed inside an FPGA for performance reasons. This
currently requires a SCA component, shown as the Filter &
UpConv block of Figure 1. This represents the control part
of the filter and up converter function, and resides on a GPP
with a direct connection to the FPGA. The hardware
platform on which the waveform is deployed has a board
support package with various SCA logical devices which
allow specialized hardware to operate within the core
framework. The development platform uses flexFabric
(platform specific RapidIO switched fabric) to quickly
move data between various processors. The control portion

of the Filter & UpConv can receive parameter control
information from the Assembly Controller and configure the
FPGA appropriately. Also, digital signal data packets from
the Modulation Mapper can be directly sent over a
flexFabric communication channel via a SCA port
connection.
 The WriteFabric interface between the Modulation
Mapper and the filter & up converter functions on the
FPGA uses a special mechanism to take advantage of the
flexFabric interface to send data to the FPGA without
CORBA. This is important since the Modulation Mapper
and the FPGA are on different physical processor boards
and the CORBA communication delays via Ethernet would
be too long for the waveform to function as it’s currently
designed at a data rate of 1 Mbps.
 A special association is needed to use the flexFabric to
send data from the GPP to the FPGA. There is an indirect
connection made to a proxy allowing the WriteFabric port
on the Modulation Mapper to obtain a handle from the core

framework, as in item 1 below. This handle is used to
access the flexFabric to write data to the FPGA. The
implementation requires three XML connections in the
software assembly descriptor (SAD) file, as Figure 2
illustrates:

1. From the GPP1 module (Modulation Mapper) to
fabric proxy on the same device.

2. From fabric proxy on GPP1 to fabric proxy on
GPP2, the device with a direct connection to the
FPGA.

3. From GPP2 module (Filter & UpConv) to fabric
proxy on the same device. This connection is a
placeholder to complete the connection, but the
handle in the Filter & UpConv is not usable by the
waveform.

 The bottom-up design approach focused on developing
the waveform functions independent of the SCA, yet

Figure 2: XML connections to FPGA

FPGA

Modulation
Mapper

fabric proxy
on GPP1

fabric proxy
on GPP2

1

2

Filter&UpConv

3

flexFabric

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

cognizant of the waveform’s top-level module boundaries
and interfaces. For example, GPP code was written for the
data generator function that was independent of the
encoding and mapping routines instead of being highly
integrated. Likewise the FPGA code was written with SCA
control delays in mind, in terms of buffering data to deal
with relatively lengthy CORBA calls.
 A model-based design approach was employed with the
FPGA circuit development. Simulations of the digital up
converter allowed parameters to be set properly for the
given waveform specifications before testing on the
hardware. VHDL code was auto-generated from the
working simulations, and then brought into the FPGA
synthesis CAD tool. The platform provided FPGA wrapper
VHDL code was integrated with the application code.
Figure 3 shows a functional block diagram of the platform
FPGA wrapper with the transmit waveform functions. The
block labeled “DUC” contains the auto-generated code from
the simulation model.

3. TESTING & VALIDATION

Testing was focused to learn whether SCA waveforms can
be used for space applications. Although the SCA start and
stop methods were designed for normal use, testing and
debugging was accomplished more efficiently using the
runTest method. This allows a variety of tests to be invoked
without changing the waveform.
 The SCA components in the waveform inherit from the
SCA CF::Resource interface which inherits the runTest
method from the TestableObject interface. The runTest
method was implemented in the SCA components to test
passing data between components. The data in the XML
preferences was used to control what data was sent for those
components tested. A large value for the property NTIMES
was entered to repeat the test for the corresponding number
of packets where each packet was 4096 bytes long. Timing

FPGA Wrapper - I/O Layer

FPGA Wrapper - Protocol Layer

IO
Framer

I/O
Framer

I/O

TM1
I/O

Application

SAND
protocol

TM1
protocol

Data Select
Mux

from 7410 or FP

TM1 FlexFabric I/O Interface

Front
Panel

I/O

405GP
I/O

Frequency & Filtering
Control Interface

(via 3100 405)

405 control
applicationflexFabric

from
7410

Front Panel I/O and LEDs

DUC
Xilinx LogiCORE

to
DAC

IRA

Asynchronous
FIFO

Clk divide
& dist.

Clock
Distribution

Demux

Figure 3: FPGA functions and wrapper integration

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

was kept and the lapse time was computed for the pertinent
tests. Thus, debugging of different portions of the
waveform’s functionality was possible by changing
property values with the user interface.
 Referring to Figure 1, a test of the Modulation Mapper
pulling a packet from the Encoder which pulls the packet
from the DataGenerator and sends the packet over the
flexFabric to the FPGA was performed. It took 2.05
milliseconds to send each packet. The results for the test of
the Filter & UpConv requesting a packet from the
Modulation Mapper which pulls the packet from the
Encoder which pulls the packet from the DataGenerator and
sends the packet over the flexFabric to the FPGA was 3.09
milliseconds per packet. The difference of about 1
millisecond is the time to send a request from the Filter &
UpConv to the Modulation Mapper. This relatively
significant delay is due to using CORBA between different
boards in the SDR. There will be more about the
implications of this in the next section.
 A challenge in waveform testing and debugging was
the time it takes to make a simple change before it can be
debugged. The process of making a code change,
recompiling, rebooting the hardware, loading the core
framework, and starting the user interface usually takes at
least 15 minutes. This time delay makes the debug process
cumbersome and inefficient by today’s standards.
Additional challenges encountered were timeout errors,
insufficient error messages from the core framework,
system hang ups, and limited documentation.

Several COTS legacy hardware modems were used in the
validation testing of the waveform. Some of these modem
specifications are proprietary, such as the synchronization
technique and forward error correction details, so
interoperability with this equipment became a challenge. A

few of the original waveform specifications needed to be
changed along the way as the testing revealed some of the
differences with the legacy modems. In particular the
addition of differential encoding became necessary to allow
phase ambiguity resolution in the commercial receivers.
The original waveform design was a unique word method of
synchronization, but this was not possible given the
proprietary nature of the COTS modems.
 The transmit waveform has been successfully tested
with legacy modem receivers using pseudo random bit
sequence data and differential encoding. Additive white
Gaussian noise was added at the 70 MHz IF yielding the
BER performance plotted in Figure 4. Some degradation
from theoretical for differentially encoded QPSK is
observed [4]. This is due in part to the unmatched pulse-
shaped filtering between the transmit waveform and the
commercial receiver. The proprietary nature of the legacy
modem receivers makes matching the filter difficult.

4. IMPLICATIONS FOR SPACE BASED SDR

Certain aspects of the SCA are important when considering
deployment, especially those that relate to size, weight, and
power for a space-based radio. Development of this space
telemetry waveform has brought forth issues regarding
FPGAs, memory, and waveform file system complexity.
 This development effort intentionally placed as many
waveform functions as possible in the GPP [1]. The FPGA
was used for remaining functions that would not meet data
rate performance in the GPP. In actual space radio
applications FPGAs are favored over GPPs because of
performance and power efficiency. Optimization is key for
limited resource space-based radios. The model-based
design approach offers portability but is not yet optimal
from a performance standpoint. A standard FPGA wrapper
would help with reusability and portability of optimized
code. Since there is no standard FPGA wrapper, there is a
porting challenge for each new radio, having a different
FPGA implementation. Unfortunately, the SCA does not
currently address FPGA application interfaces adequately.
Although there is on going work in this area, it is
recommended that industry and the standards bodies
increase their efforts.
 The bottom-up waveform development approach
produced a non-SCA waveform, which allows an interesting
comparison with the SCA waveform in terms of resources.
The non-SCA waveform is a combination of all the data
flow functions, such as encoders and upconverters, running
without any SCA infrastructure.
 As an estimate of the effort involved and resources
required, the SCA waveform consisted of 69 files: 22 “.h”
files, 25 “.cpp” files, 18 XML files, and 4 IDL files,
whereas the non-SCA waveform consisted of 15 “.c” files.

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 3 6 9 12
Eb/No (dB)

B
ER

testing
theory

Figure 4: BER performance with legacy modem

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The previous SCA waveform file count does not include 44
additional files, 11 generated for each IDL file. The SCA
and non-SCA waveforms each consist of about 11600 lines
of code. Although these numbers of lines appear to be
similar, the SCA waveform is much more complex. It
contains implementations of the CF::Resource interface
methods, and CORBA for data transfer, whereas the non-
SCA waveform contains extra test programs required for
bottom-up testing.
 In terms of memory footprint, there are significant
differences for the SCA and non-SCA waveforms. The
SCA waveform consisted of 6.3 MB generated in 7 “*.out”
files whereas the non-SCA waveform consisted of 0.5 MB
generated in 2 “.out” files. The SCA waveform is almost 13
times as large as the non-SCA waveform, even before the
core framework and CORBA are included in the SCA
environment. On the test platform's GPPs, the core
framework took over 35 MB of memory, which includes 6
MB for the XML parser alone. The XML files are used for
dynamic deployment, which may not be necessary on a
space-base radio due to the static nature of the mission
requirements. In addition, the ACE/TAO ORB took about
12 MB. Although there are other much smaller ORBs
available, the core framework and ORB would still consume
a significant proportion of the required resources. Current
reconfigurable space radios have only about 2 MB of
memory to do everything, including the operating system.
The processing power in terms of GPP speed and FPGA
gates is also at a premium, so it would be difficult to fly
such an SCA waveform on space transceivers in the near
term. However, a viable “light weight” version of the SCA
may enable the SCA to fly on future missions.

 In the meantime, NASA is developing an open
architecture radio infrastructure that parallels the SCA in
many aspects but is small enough to fly on near-term
missions. Tradeoffs with the flexibility the SCA offers and
the constraints of the space-based radios are a major part of
the architecture design. The SCA space telemetry
waveform effort reported on in this paper has enabled the
NASA architecture team to understand and assess the use of
the SCA for space. Many subtle aspects were only
discovered through this hands-on development. Future
plans involve a port of the SCA space telemetry waveform
to the new NASA software radio infrastructure as one of the
first test cases.

5. ACKNOWLEDGEMENTS

The authors would like to especially thank the following
NASA Glenn STRS waveform team members for their
contributions to this effort: Daniel Oldham, Thomas Bizon,
and Jeffrey Glass.

6. REFERENCES

[1] D.J. Mortensen, M. Kifle, C.S. Hall, T.M. Quinn, “SCA

Waveform Development For Space Telemetry”, SDR Forum
Technical Conference, November 2004.

[2] A. Gonzalez, R. Hess, “JTRS SCA Developer’s Guide”,
Raytheon for JTRS JPO, June 2002.

[3] JTRS-5000SCA, Appendix D, rev 2.2.
[4] B. Sklar, Digital Communications 2nd ed., Prentice

Hall,UpperSaddle River, NJ, 2001.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

