MODELING LANGUAGE FOR SOFTWARE DEFINED RADIO
APPLICATIONS

Matthias WelReling (BenQ Mobile, CTM PIC NGT, 46395 Bocholt,
Germanymatthias.wesseling@siemens.gom

1. ABSTRACT

The mobile communication market is confronted wath

This will allow to create new business models for
programming Software Defined Radio platforms, bseau
programming a mobile communication standard like T8\
WLAN would not require any hardware know how anyejor

increasing number of communication standards and and no complex programming with adaptation to any

corresponding complexity for the mobile
applications. To cope with this complexity, the (Bafre
Defined Radio approach gains more and more atyeaetss.
The upcoming hardware platforms supporting a méhiéd

terminal specific hardware details. The implementation stap be

performed in a separate development step, and df th
application description contains sufficient infotioa, this
step could be automated. To allow this automatiach @

communication standards all have to compromise dmtw optimization in the implementation step, the apgimn has

the degree of supported flexibility and the reqdippwer

to be specified in a way that the required processs

consumption. These compromises cause a more compleescribed in detail, but which still keeps the ptitd for

programming interface, because parallelization @k
synchronization and latency time restrictions hawebe
evaluated in detail. The decoupling of the hardvpdagform
from a specific application will also change thesibess
models in the future, because software and harddané
have to be developed from the same company anyrBaoie.
to support this development, a new interface hasdo

hardware-specific optimizations. Within the SDR jpod at
BenQ Mobile, we developed a new programming float th
supports this concept by defining a new modelimglege
and providing hardware specific adaptations cortipita
techniques.

Considering specific hardware architecture featuneswill
show how to describe algorithms to keep the fldixybfor

defined to separate the required know how about than efficient mapping to all different hardware fodams. The

hardware platforms from
application specification. This paper will introducone
proposal and show development results.

2. INTRODUCTION

One important architecture feature for currentlppmsed

the know how about therequired structures for data flow and control diggiom with

the corresponding schedule information is presented
Additional to the language itself the implementatrequires

a few separate steps for the insertion of the harelw
information and about the required programmingriate.

A tailored implementation of the described algorithon
the specific hardware platform should be possible.

hardware platforms for Software Defined Radio i® th With a complete description of WLAN 802.11a/b plogdi

parallelization of processing power in very differeinds
[2,3,4]. But this parallelization also leads to widdal
programming restrictions, which
consideration of the parallelization potential ohet
application. To reduce these complexities and tedpup
the development process, we suggest the separattitre
software development flow into at least two diffarsteps,
such that developers need the experience onlytlereihe
hardware/software or in the application area.
development step, the application is specified haalware

and MAC layer we can verify the concept of the
programming flow and the programming language togret

requires a detailedwith the development tools.

Additionally we will show, why and how the businessdel
for programming mobile platforms will be differeribr
software defined radio platforms compared to curren
platforms, and that a standardized hardware indig@n

Ine oninterface for these platforms will be basic for thmarket

success.

independent way, and in a separate step, the heedwa

specific implementation can be done without knogked

about the application.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

3. CHANGE OF BUSINESS MODEL

The Software Defined Radio approach will not orthaicge
the separation of the hardware and software dewedap
but also will change the future distribution of ée®pment

4. MODELING AND IMPLEMENTATION
CONCEPT

Modeling of any systems always try to simplify ascidption
and hide details of components to abstract the adiver

between the different business areas. A semicoaductdescription. The essential question with good nindeis
company, which will release a new hardware platformalways the right separation between the informatiat is

specific for a GSM or UMTS device, needed to createt

really required at the model level and the infoiioratvhich

of know how specific for this standards. This wascan be hidden under a component, because it haspaxt

implemented into the hardware, and the basic softwall

on the description of one layer above the componardgur

be implemented by this company, because hardwagle amoncept we try to separate as much as possibleebatthe

standard know how is required for this developmé&itite
software development is restricted to this one dstesh
because the hardware does not support any othetasth

~

/Application Domain

Bluetooth
Software
Companies w
A
Tools
Companies Application Model
h b
Implementation Implementation
Domain (A) Domain (B)
« Algorithm * Algorithm
Adaptation Adaptation
. « Parallelization « Parallelization
Semi- - Profiling « Profiling
conductor « Synchronization « Synchronization
Companies * RT Verification * RT Verification

« Optimization

A

HW Platform
Architecture A

« Optimization
A

HW Platform
Architecture B

J |

Figure 1: Application Modeling as I nterface

As soon as the hardware platform now is independkttte
supported standards, the know how of the standardst
required anymore for the hardware development. Sdme
is true for the software development. So why shahid
work still be performed by a semiconductor. Toiz#ilthe
potential of such a flexible hardware, a lot offeliént
software implementations are required, or othervtise
flexibility is not seen by the customers. To cotes huge
development area probably many different compawigs
many different know how areas are required. Figushows
a possible separation between application modeting
implementation on a hardware platforms.

information that is required for the different dement
steps required to create an implementation on pleeific
hardware architecture. Looking at Figure 2 we digiish
between different description domains.

Functionality Model
Complete Specification of Application
(timing/function)

<

Functionality Algorithmic Model

Complete Specification with means of algorithms

Platform Model

Programming Interface,
Guidelines, Algorithm
Runtime Info

L

Platform Specific Application

Model
Task Mapping, HW Schedule, Block Sizing, Timing
Verification, Control

Coding Info
Algorithm Templates,
OS Interface, System

Libraries

L

Platform Specific Program Code
Platform Tools specific, Native Program Interface
Project Files, Compiler Options

Figure 2: Modeling Domains
Functional Model of Application

The highest level is the ‘Functionality Model’. Bhtan be
seen as the specification of an application covdreda
model description. The information we see in tlegel of
abstraction should be similar to the information @f
specification document, but represented in a sjgefofm
and ready to be processed automatically. The aibistna

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

should be that high, that all implementations ofsth we should see the exact run-time behaviour as & is

application could be derived from this functionalael. The
model should not contain any algorithmic descriptad the
signal processing as long as it is not requirec fllters are
not designed in this document, only the filter perfance is
to specify. And whether a convolutional code is aitbstl
with a viterbi decoder or any other one is not in@at for
the application as long as the receive performaisce
achieved. Currently this level of description ig nithin the
focus of our work and still is a broad area forufet
academic work.

Functional Algorithmic M odel of Application

The next lower domain level is the
Algorithmic Model’, which is based on an algorittami
description that will meet the specification. Heme can

define in detail, which filter to take, the ovemsgaling rate,

the dynamic range of the ADC, the frequency tragkim

channel estimator algorithms,
anything that affects the functional operation, have to be
careful to keep a high potential for different implentations
on different hardware platforms. Especially the tomnof

the algorithms is a crucial point, because thidedsfin a
huge range considering several hardware archiest(gee
also chapter 5). Also real-time conditions are pHrthe
description, but since we are still hardware inchejeat in
this domain, they are descriptive only and are isgpdrom
the functional description.

Platform Architecture M odel

For an efficient implementation we also need a rhotliéhe
hardware architecture. This model does have toagorall
the information required for the right implemendati
decisions. This is not necessarily the real
architecture, but more the interface to the prognam Here
we find a database of all supported algorithmsh weitact
timings for each possible implementation, the pidéérof
parallelization, synchronization strategies andirtgs, or
external interfaces together with timing restrino

Platform Specific | mplementation M odel

The information of the functional algorithmic modeid the
platform architecture model can now be merged iato
specific implementation for this platform. All infmation
that is required for efficient decisions have topaet of the

not data dependent. All decisions about implemamtat
compromises are already taken (see also Figure 6).

Implementation Program Code

This is the real program code and not a model asrited
in the previous domains. The program code is jostleer
representation of the platform specific implemdotat
model, but it is now in the input format requireg the
native compiler tools, which should create exadiie
behavior that was described in the implementati@mueh
For the most hardware platforms it is a C like cettacture
and depending on the architecture with vector oltisfask

‘Functionality extensions. The required adaptations to the operati

system, the supported system libraries and datestygve
required to create this program code. The generebed
does not have to be restricted to the functionétisif, but
can also contain all the project files, compilertiops,

etc. We should definelependency files or the makefiles.

5.A MODEL AND IMPLEMENTATION
EXAMPLE

The most reasonable interface in the previous dewveént
flow we see in the functional algorithmic model tife

application. The choice of algorithms can be of reeu
already hardware dependent, because they are méesso
optimal for specific architectures. Neverthelesshange of
algorithms on this high level is not a crucial goémd can
easily be done compared to the implementation crsa0g

mobile platform architectures.

To see the requirements of a model language we will
introduce a small application example and try tgrnias to

hardwartwo potential hardware architectures for mobilarieals.

First we will have a look to potential architecture
characteristics to be considered for mapping ahéding
strategies.

Architecture Characteristics

This architecture can be based on a large numb&sSH
units, all running with a relative low clock freqey. The
synchronization of the DSP tasks, is done by soéweith
no special hardware support. The strategy for
implementation in this case is to find as much elrtasks
as possible and trying to reduce the synchroniaagitorts,

the

one or the other source model. The ‘Platform Specif because latency time is a crucial point due tddheclock.

Implementation Model' describes in detail, how tntol

With large vector execution units we have to findigh

the whole application, which part is mapped to whatdegree of data parallelism, which also affects ldtency

resources, what will run in parallel, and whereva® need
synchronization between parallel tasks,
synchronization methods should be used. From tlidemn

time. The level of potential vectorization can beryw

and whatlifferent for parts of the application. Another iopt are

optimized accelerators for specific processing rlgms.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The flexibility is quite reduced and therefore thapping of
abstracted descriptions more difficult.

The Application Examples

We will introduce two small examples to show astea few
of the points that are important for the model fjmtion

and therefore the model language. The first ongsliaofew
parallelization aspects and the second a contemludsion.
There are of course more points to consider, bigt wlil

give already an impression of the strategy we Vollith

our modeling.

Figure 3 and Figure 4 sketch a streaming applicatio
without the outer control of the stream. It corssief only
three different algorithms in a signal processirtaig.
Considering two different choices for a paralldi@a of
this application the compromises to be taken acsvehiIn
the first case in Figure 3 the data stream isdliot several
blocks and mapped to parallel execution units.tkerfilter
operation we can only skip the synchronization loé t
internal states if we overlap the input data wih size of
the filter length. The demodulation has no intemaia and
can therefore run independent in each task. Buttlier
Viterbi operation we need synchronization, becatlse
internal states have to be accessed in the rigjiesee.

In the second case (Figure 4) we parallelize the
functionality, which changes the control a lot. Timput

stream of the filter now does not require any aygskd

input, but now we have to synchronize between the
functionality blocks. The granularity size of the
synchronization (wait on 1 or n samples) should be
dependent on the specific timings on the platform.

| Demod | | Demod | | Demod |
¥ 2 2
| viteroi = viterbi = viterbi |
Task 1 Task 2 Task 3

- Good balance of task utilization

- Less synchronization

- States of blocks have to be global
- Flexible general task processor

- Short latency time

Seq Sync
required

Figure 3: Parall€elization of Data Stream

Ops 10 us
|

20 ps 30 ps
|

[rr | [R | Tasks

| Demod | | Demod | | Demod | Task 2

| viterbi | | viterbi | | viterbi | Task3

- Non optimal balance of task utilization
- More synchronization
- States of blocks stay local =

Especially on platforms with accelerators, thisicture will
be applied.

We see a very different control in these implemgona,
which can't be part of the application model asgl@s we
can not convert one control to another control dpson.

. . Seq Sync
- Specific task processors possible | required
- Long latency time

Figure4: Parallelization of Functionality

We solve this issue with the following strategy.eféd are

Therefore the control should really be restricteal t two different schedule domains. One is the Syngmnen

functional specifications. Also the block size ofiet

Data Flow (SDF) domain, which is also known frorhest

components can be used for description, but only fosimulation tools, like Cossap, SPW or MLDesignetl A

descriptive reasons. It must be possible to conthete
block sizes for tailoring them to hardware chanasties.
One very important point is the scheduler, whiclalisays
strongly hardware dependent. This is a difficulsus,
because we have to assume a scheduler for theptesgr
but the description should also keep the potetdiahange
the schedule as much as possible to cover a witgeraf
different architectures. A definition of a schedulgth as
less assumptions as possible is an essential partrmdel
that can be mapped on many different architectures.

blocks could run in parallel as long as they cosisttie data
dependencies. There is no data transfer betweetkdlo
independent of this data flow allowed, for examjbe
memory access. In this case the right access segueuld
not be defined.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

TRG Domain SysApp
startSync
SDF Domain DoWhile_1
bufOfs condFlag outOfs
Msg >InTrg [:OUtT"Q Any -
S Rd/Wr/Cnt Wr Wr Op Hdr
Abs Save
RdBuf > Sum > Thresh > Ofs
Figure5: Control Description Example with a Do-While L oop
* Task ID
o RdBuf | Sum Wait Thrsh | Send
2 (2 Sync (2) Syn
RdBuf | Sum Wait | Thrsh | Send | RdBuf Sum .
14 @ | @ sync| @ | sync| (3 (3 Voyne | Saveors e
T >
0 4 8 12 16 20 24 28 32 36

Figure 6: M apping the Do-While Loop to 2 Tasks

The other schedule domain we define is the trig&G)
domain. In this case there is no data flow allowetiveen
blocks, but just trigger exchanges. These triggeesjust
for describing the sequence of execution, but do no
require an exchange of any particle. This way,eligone
exact sequence how to execute the blocks, whichwsll write access usually does not allow a parallel etien of
arbitrary memory access. But additionally each succeeding loop steps. But in this case we know witk
dependency between blocks by memory accesses are be written into this state and can use this infdioma to
visible in the application model and for the allow a parallel execution. Therefore this is inpot
implementation step this can be analyzed and thex¢fie information and has to be part of the model. Wecdles
parallelization potential is still available. Thedemains this with a counter access type and additional sce
can be mixed between the hierarchies, but not rvitinie properties.

hierarchy level.

alternative way. Unit 1 takes the odd loop itenasi@nd
unit 2 the even iterations.

The first problem is the RdBuf block, because it laa
internal state for the buffer offset (bufOfs). Ttead and

The usual do-while loop algorithm is based on the
The next example is focused on a loop control. The evaluation of a condition at the end of one lo@paition.
description of Figure 5 takes the data of an inmffer, This would avoid a parallel execution of severabpdo
sums the absolute values and compares them with a iterations. Therefore it is important to make isible,

threshold and stores the current buffer offset.sTisi
repeated as long as the threshold is not exceddece
this loop is left, there can be processed the Anp@pk
and then it starts with finding the header in thefeyr.
Trying to map this algorithm to a multi-task hardea
platform we could select the following solution: ér'h
iteration steps within the DoWhile_1 block are megpo
two different units, that are processing the iferat in an

where this condition (condFlag) is determined taleate
this condition as early as possible. And when éatukly

the implementation is structured in a way thatdhanges
performed within the iteration step can be unddhen

we have a higher potential for parallelization op§.

The DoWhile operation is specified just by conventof
the block name and the memory item named condFlag.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

In Figure 6 we see that the second loop step itedtdn
task 2 before the first one has finished and thep lo
condition is evaluated. This can be done, becawse tis

no change of global data. The only operation to be
processed sequentially is the Thresh block. Thithés
information that has to be exchanged between the tw
tasks, and therefore requires a defined sequence. W
framed this block with the WaitSync and the SendSyn
blocks. In this case we see that a further paizdigbdn to

3 or more tasks would not increase the performance
because the required synchronization would avoid an
efficient parallel execution. But other synchrotiza
mechanisms would be possible as long as we exsedy
what has to be done for this application.

The saveOfs block should store the last buffer edffs
before the threshold was exceeded. Because thisvige
only access to a memory, which is not used anywhisee

in this loop we can skip this operation as long ass not

the last loop.

The AnyOp block does not have any dependency on the
loop block and therefore we are free to execute tifock
before or in parallel to the loop iteration. In t@st to
this the FindHdr block has a potential memory revits
conflict on the startSync memory. Therefore thizcklhas

to wait on the last activation of the saveOfs blagthin

the loop.

The MsgStart block is required to define when the
processing is to be started. The additional infeionais
of course, how many times and in which time periogs
will get a message to start the whole operationwef
receive such a message during the execution,
considerations regarding mapping to tasks will ¢ean
significantly. The type of the description in thgpdication
is just a block with the name MsgStart and the agss
name. Whether this is a real message to be hahgled
message handler, an interrupt, or any procedutéscaf
course dependent on the hardware architecture.

the

6. DIFFERENCE TO OTHER MODELING
TOOLS

Modeling applications to abstract the implementatie
not a new issue and therefore we have to arguenghgo
not use the solutions already available and whieteelop
our own solutions. The main argument here is thaha
known simulation and modeling tools are quite éfit to
describe a simulation of the algorithms of an agaion,
but are all based on the specific schedulers. The
descriptions are restricted to these fix defineldedales
and a mapping to other schedules, especially fdti-mu
task architectures is not possible without a vermnglex
and detailed analysis of the description. Many dake

decisions are taken dynamically during the run tohthe
simulation, because the required information is not
explicitly specified in the model. This is of advage for

a flexible and easy modeling, but avoids an efficiand
tailored implementation.

Other important information is not covered by maofsthe
tools. The real time requirements of the applicatiself,

but also the real time behavior of the interfacéshe
application model are needed to evaluate an efficie
mapping. The streaming algorithms are covered quite
sufficiently, but the control modeling is harderabstract
and still needs more consideration for automatic
implementation design flows.

7. STATUSOF WORK

Within BenQ Mobile we have a complete model of a
WLAN 802.11a/b transmitter and receiver for theitdig
part, and a basic tool chain, which can generate a
complete and running code for a multi-task hardware
architecture. These models are created with thalatian
tools MLDesigner and Simulink, where specific guide
lines where applied to create exactly the required
information and make the models independent of the
attached schedulers.

The next steps will focus on the timing considenagi and

the creation of optimized mapping and schedule
algorithms.

8. REFERENCES

[1] R. Hossain, M. WeReling and C. Leopold, “Virtualdia
Engine - A Programming Concept for Separation of
Application Specifications and Hardware Architeeslt
Proceedings. 14th IST Mobile and Wireless
Communications Summit, Dresden, June 2005.

[2] H.-M. Bluethgen and C. Grassmann and W. Raab and U.
Ramacher, “A Programmable Baseband Platform for
Software-Defined Radio”, SDR’'04 Technical Confernc
Phoenix, November 2004

[3] C. Grassmann, M. Sauermann, H.-M. Bluethgen &hd
Ramacher, “System Level Hardware Abstraction for
Software Defined Radio”, SDR'04 Technical Confemnc
Phoenix, November 2004

[4] K. van Berkel et al., “Vector Processing asEmabler for
Software Defined Radio”, SDR'04 Technical Confemnc
Phoenix, November 2004

[5] S. Jinturkar et al.,, “Software Centric Approacio
developing wireless applications”, SDR’'04 Technical
Conference, Phoenix, November 2004

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

