

MODELING LANGUAGE FOR SOFTWARE DEFINED RADIO

APPLICATIONS

Matthias Weßeling (BenQ Mobile, CTM PIC NGT, 46395 Bocholt,
Germany, matthias.wesseling@siemens.com)

1. ABSTRACT

The mobile communication market is confronted with an
increasing number of communication standards and a
corresponding complexity for the mobile terminal
applications. To cope with this complexity, the Software
Defined Radio approach gains more and more attractiveness.
The upcoming hardware platforms supporting a manifold of
communication standards all have to compromise between
the degree of supported flexibility and the required power
consumption. These compromises cause a more complex
programming interface, because parallelization potential,
synchronization and latency time restrictions have to be
evaluated in detail. The decoupling of the hardware platform
from a specific application will also change the business
models in the future, because software and hardware don’t
have to be developed from the same company anymore. But
to support this development, a new interface has to be
defined to separate the required know how about the
hardware platforms from the know how about the
application specification. This paper will introduce one
proposal and show development results.

2. INTRODUCTION

One important architecture feature for currently proposed
hardware platforms for Software Defined Radio is the
parallelization of processing power in very different kinds
[2,3,4]. But this parallelization also leads to additional
programming restrictions, which requires a detailed
consideration of the parallelization potential of the
application. To reduce these complexities and to speed up
the development process, we suggest the separation of the
software development flow into at least two different steps,
such that developers need the experience only in either the
hardware/software or in the application area. In one
development step, the application is specified in a hardware
independent way, and in a separate step, the hardware
specific implementation can be done without knowledge
about the application.

This will allow to create new business models for
programming Software Defined Radio platforms, because
programming a mobile communication standard like UMTS,
WLAN would not require any hardware know how anymore,
and no complex programming with adaptation to any
specific hardware details. The implementation step can be
performed in a separate development step, and if the
application description contains sufficient information, this
step could be automated. To allow this automatism and an
optimization in the implementation step, the application has
to be specified in a way that the required processing is
described in detail, but which still keeps the potential for
hardware-specific optimizations. Within the SDR project at
BenQ Mobile, we developed a new programming flow that
supports this concept by defining a new modeling language
and providing hardware specific adaptations compilation
techniques.
Considering specific hardware architecture features, we will
show how to describe algorithms to keep the flexibility for
an efficient mapping to all different hardware platforms. The
required structures for data flow and control description with
the corresponding schedule information is presented.
Additional to the language itself the implementation requires
a few separate steps for the insertion of the hardware
information and about the required programming interface.
A tailored implementation of the described algorithms on
the specific hardware platform should be possible.

With a complete description of WLAN 802.11a/b physical
and MAC layer we can verify the concept of the
programming flow and the programming language together
with the development tools.

Additionally we will show, why and how the business model
for programming mobile platforms will be different for
software defined radio platforms compared to current
platforms, and that a standardized hardware independent
interface for these platforms will be basic for the market
success.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

3. CHANGE OF BUSINESS MODEL

The Software Defined Radio approach will not only change
the separation of the hardware and software development,
but also will change the future distribution of development
between the different business areas. A semiconductor
company, which will release a new hardware platform
specific for a GSM or UMTS device, needed to create a lot
of know how specific for this standards. This was
implemented into the hardware, and the basic software will
be implemented by this company, because hardware and
standard know how is required for this development. The
software development is restricted to this one standard,
because the hardware does not support any other standard.

DVB-H

UMTS

WLAN
802.11g

Application Domain

RFID

EDGE

GPS

DMB

WiMax

Bluetooth

Implementation
Domain (A)
• Algorithm

Adaptation
• Parallelization
• Profiling
• Synchronization
• RT Verification
• Optimization

Application ModelApplication Model

HW Platform
Architecture A

Implementation
Domain (B)

HW Platform
Architecture B

• Algorithm
Adaptation

• Parallelization
• Profiling
• Synchronization
• RT Verification
• Optimization

Software
Companies

Tools
Companies

Semi-
conductor
Companies

Figure 1: Application Modeling as Interface

As soon as the hardware platform now is independent of the
supported standards, the know how of the standards is not
required anymore for the hardware development. The same
is true for the software development. So why should this
work still be performed by a semiconductor. To utilize the
potential of such a flexible hardware, a lot of different
software implementations are required, or otherwise the
flexibility is not seen by the customers. To cover this huge
development area probably many different companies with
many different know how areas are required. Figure 1 shows
a possible separation between application modeling and
implementation on a hardware platforms.

4. MODELING AND IMPLEMENTATION
CONCEPT

Modeling of any systems always try to simplify a description
and hide details of components to abstract the overall
description. The essential question with good modeling is
always the right separation between the information that is
really required at the model level and the information which
can be hidden under a component, because it has no impact
on the description of one layer above the component. In our
concept we try to separate as much as possible between the
information that is required for the different development
steps required to create an implementation on the specific
hardware architecture. Looking at Figure 2 we distinguish
between different description domains.

Functionality Model
Complete Specification of Application

(timing/function)

Functionality Model
Complete Specification of Application

(timing/function)

Platform Specific Application
Model

Task Mapping, HW Schedule, Block Sizing, Timing
Verification, Control

Platform Specific Application
Model

Task Mapping, HW Schedule, Block Sizing, Timing
Verification, Control

Platform Specific Program Code
Platform Tools specific, Native Program Interface

Project Files, Compiler Options

Platform Specific Program Code
Platform Tools specific, Native Program Interface

Project Files, Compiler Options

Functionality Algorithmic Model
Complete Specification with means of algorithms

Functionality Algorithmic Model
Complete Specification with means of algorithms

Platform Model
Programming Interface,
Guidelines, Algorithm

Runtime Info

Platform Model
Programming Interface,
Guidelines, Algorithm

Runtime Info

Coding Info
Algorithm Templates,
OS Interface, System

Libraries

Coding Info
Algorithm Templates,
OS Interface, System

Libraries

Figure 2: Modeling Domains

Functional Model of Application

The highest level is the ‘Functionality Model’. This can be
seen as the specification of an application covered by a
model description. The information we see in this level of
abstraction should be similar to the information of a
specification document, but represented in a specific form
and ready to be processed automatically. The abstraction

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

should be that high, that all implementations of this
application could be derived from this functional model. The
model should not contain any algorithmic description of the
signal processing as long as it is not required. The filters are
not designed in this document, only the filter performance is
to specify. And whether a convolutional code is decoded
with a viterbi decoder or any other one is not important for
the application as long as the receive performance is
achieved. Currently this level of description is not within the
focus of our work and still is a broad area for future
academic work.

Functional Algorithmic Model of Application

The next lower domain level is the ‘Functionality
Algorithmic Model’, which is based on an algorithmic
description that will meet the specification. Here we can
define in detail, which filter to take, the over-sampling rate,
the dynamic range of the ADC, the frequency tracking or
channel estimator algorithms, etc. We should define
anything that affects the functional operation, but have to be
careful to keep a high potential for different implementations
on different hardware platforms. Especially the control of
the algorithms is a crucial point, because this differs in a
huge range considering several hardware architectures (see
also chapter 5). Also real-time conditions are part of the
description, but since we are still hardware independent in
this domain, they are descriptive only and are separate from
the functional description.

Platform Architecture Model

For an efficient implementation we also need a model of the
hardware architecture. This model does have to contain all
the information required for the right implementation
decisions. This is not necessarily the real hardware
architecture, but more the interface to the programmer. Here
we find a database of all supported algorithms, with exact
timings for each possible implementation, the potential of
parallelization, synchronization strategies and timings, or
external interfaces together with timing restrictions.

Platform Specific Implementation Model

The information of the functional algorithmic model and the
platform architecture model can now be merged into a
specific implementation for this platform. All information
that is required for efficient decisions have to be part of the
one or the other source model. The ‘Platform Specific
Implementation Model’ describes in detail, how to control
the whole application, which part is mapped to what
resources, what will run in parallel, and where do we need
synchronization between parallel tasks, and what
synchronization methods should be used. From this model

we should see the exact run-time behaviour as long as it is
not data dependent. All decisions about implementation
compromises are already taken (see also Figure 6).

Implementation Program Code

This is the real program code and not a model as described
in the previous domains. The program code is just another
representation of the platform specific implementation
model, but it is now in the input format required by the
native compiler tools, which should create exactly the
behavior that was described in the implementation model.
For the most hardware platforms it is a C like code structure
and depending on the architecture with vector or multi-task
extensions. The required adaptations to the operating
system, the supported system libraries and data types are
required to create this program code. The generated code
does not have to be restricted to the functionality itself, but
can also contain all the project files, compiler options,
dependency files or the makefiles.

5. A MODEL AND IMPLEMENTATION
EXAMPLE

The most reasonable interface in the previous development
flow we see in the functional algorithmic model of the
application. The choice of algorithms can be of course
already hardware dependent, because they are more or less
optimal for specific architectures. Nevertheless, a change of
algorithms on this high level is not a crucial point and can
easily be done compared to the implementation changes on
mobile platform architectures.
To see the requirements of a model language we will
introduce a small application example and try to map this to
two potential hardware architectures for mobile terminals.
First we will have a look to potential architecture
characteristics to be considered for mapping and scheduling
strategies.

Architecture Characteristics

This architecture can be based on a large number of DSP
units, all running with a relative low clock frequency. The
synchronization of the DSP tasks, is done by software with
no special hardware support. The strategy for the
implementation in this case is to find as much parallel tasks
as possible and trying to reduce the synchronization efforts,
because latency time is a crucial point due to the low clock.
With large vector execution units we have to find a high
degree of data parallelism, which also affects the latency
time. The level of potential vectorization can be very
different for parts of the application. Another option are
optimized accelerators for specific processing algorithms.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

The flexibility is quite reduced and therefore the mapping of
abstracted descriptions more difficult.

The Application Examples

We will introduce two small examples to show at least a few
of the points that are important for the model specification
and therefore the model language. The first one shows a few
parallelization aspects and the second a control discussion.
There are of course more points to consider, but this will
give already an impression of the strategy we follow with
our modeling.

Figure 3 and Figure 4 sketch a streaming application,
without the outer control of the stream. It consists of only
three different algorithms in a signal processing chain.
Considering two different choices for a parallelization of
this application the compromises to be taken are shown. In
the first case in Figure 3 the data stream is sliced into several
blocks and mapped to parallel execution units. For the filter
operation we can only skip the synchronization of the
internal states if we overlap the input data with the size of
the filter length. The demodulation has no internal data and
can therefore run independent in each task. But for the
Viterbi operation we need synchronization, because the
internal states have to be accessed in the right sequence.

In the second case (Figure 4) we parallelize the
functionality, which changes the control a lot. The input
stream of the filter now does not require any overlapped
input, but now we have to synchronize between the
functionality blocks. The granularity size of the
synchronization (wait on 1 or n samples) should be
dependent on the specific timings on the platform.
Especially on platforms with accelerators, this structure will
be applied.

We see a very different control in these implementations,
which can’t be part of the application model as long as we
can not convert one control to another control description.
Therefore the control should really be restricted to
functional specifications. Also the block size of the
components can be used for description, but only for
descriptive reasons. It must be possible to convert these
block sizes for tailoring them to hardware characteristics.
One very important point is the scheduler, which is always
strongly hardware dependent. This is a difficult issue,
because we have to assume a scheduler for the description,
but the description should also keep the potential to change
the schedule as much as possible to cover a wide range of
different architectures. A definition of a scheduler with as
less assumptions as possible is an essential part of a model
that can be mapped on many different architectures.

Task 1 Task 2 Task 3

1-10

10 µµµµs 20 µµµµs

FIR

11-20 21-30 . . .

Demod

Viterbi

30 µµµµs0 µµµµs

- Good balance of task utilization
- Less synchronization
- States of blocks have to be global
- Flexible general task processor
- Short latency time

FIR

Demod

Viterbi

FIR

Demod

Viterbi

Rx
Buffer

Seq Sync
required

t

Figure 3: Parallelization of Data Stream

Task 3

Task 2

Task 1

Rx
Buffer

1-10

10 µµµµs 20 µµµµs

FIR

11-20 21-30 . . .

Demod

Viterbi

FIR

Demod

Viterbi

FIR

Demod

Viterbi

Seq Sync
required

30 µµµµs0 µµµµs

- Non optimal balance of task utilization
- More synchronization
- States of blocks stay local
- Specific task processors possible
- Long latency time

t

Figure 4: Parallelization of Functionality

We solve this issue with the following strategy. There are
two different schedule domains. One is the Synchronous
Data Flow (SDF) domain, which is also known from other
simulation tools, like Cossap, SPW or MLDesigner. All
blocks could run in parallel as long as they consider the data
dependencies. There is no data transfer between blocks
independent of this data flow allowed, for example by
memory access. In this case the right access sequence would
not be defined.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

SysApp
TRG Domain

DoWhile_1

RdBuf
Abs
Sum

Thresh
Save
Ofs

M

bufOfs

M

condFlag

InTrg OutTrgM

outOfs

Rd/Wr/Cnt Wr Wr

Any
Op

Find
Hdr

SDF Domain M

startSync

Msg
Start

Figure 5: Control Description Example with a Do-While Loop

4 8 12 16 20 24 280

Time
[µµµµs]

2

1

Task ID

32 36

RdBuf
(1)

Sum
(1)

Wait
Sync

Thrsh
(1)

Send
Sync

Wait
Sync

Thrsh
(2)

Send
Sync

RdBuf
(3)

Sum
(3) WSync SaveOfs

RdBuf
(2)

Sum
(2)

Figure 6: Mapping the Do-While Loop to 2 Tasks

The other schedule domain we define is the trigger (TRG)
domain. In this case there is no data flow allowed between
blocks, but just trigger exchanges. These triggers are just
for describing the sequence of execution, but do not
require an exchange of any particle. This way, there is one
exact sequence how to execute the blocks, which allows
arbitrary memory access. But additionally each
dependency between blocks by memory accesses are
visible in the application model and for the
implementation step this can be analyzed and therefore the
parallelization potential is still available. These domains
can be mixed between the hierarchies, but not within one
hierarchy level.

The next example is focused on a loop control. The
description of Figure 5 takes the data of an input buffer,
sums the absolute values and compares them with a
threshold and stores the current buffer offset. This is
repeated as long as the threshold is not exceeded. Once
this loop is left, there can be processed the AnyOp block
and then it starts with finding the header in the buffer.
Trying to map this algorithm to a multi-task hardware
platform we could select the following solution: The
iteration steps within the DoWhile_1 block are mapped to
two different units, that are processing the iterations in an

alternative way. Unit 1 takes the odd loop iterations and
unit 2 the even iterations.

The first problem is the RdBuf block, because it has an
internal state for the buffer offset (bufOfs). The read and
write access usually does not allow a parallel execution of
succeeding loop steps. But in this case we know what will
be written into this state and can use this information, to
allow a parallel execution. Therefore this is important
information and has to be part of the model. We describe
this with a counter access type and additional access
properties.

The usual do-while loop algorithm is based on the
evaluation of a condition at the end of one loop iteration.
This would avoid a parallel execution of several loop
iterations. Therefore it is important to make it visible,
where this condition (condFlag) is determined to evaluate
this condition as early as possible. And when additionally
the implementation is structured in a way that the changes
performed within the iteration step can be undone, then
we have a higher potential for parallelization options.

The DoWhile operation is specified just by convention of
the block name and the memory item named condFlag.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

In Figure 6 we see that the second loop step is started in
task 2 before the first one has finished and the loop
condition is evaluated. This can be done, because there is
no change of global data. The only operation to be
processed sequentially is the Thresh block. This is the
information that has to be exchanged between the two
tasks, and therefore requires a defined sequence. We
framed this block with the WaitSync and the SendSync
blocks. In this case we see that a further parallelization to
3 or more tasks would not increase the performance
because the required synchronization would avoid an
efficient parallel execution. But other synchronization
mechanisms would be possible as long as we exactly see
what has to be done for this application.
The saveOfs block should store the last buffer offset
before the threshold was exceeded. Because this is a write
only access to a memory, which is not used anywhere else
in this loop we can skip this operation as long as it was not
the last loop.
The AnyOp block does not have any dependency on the
loop block and therefore we are free to execute this block
before or in parallel to the loop iteration. In contrast to
this the FindHdr block has a potential memory read/write
conflict on the startSync memory. Therefore this block has
to wait on the last activation of the saveOfs block within
the loop.
The MsgStart block is required to define when the
processing is to be started. The additional information is
of course, how many times and in which time periods we
will get a message to start the whole operation. If we
receive such a message during the execution, the
considerations regarding mapping to tasks will change
significantly. The type of the description in the application
is just a block with the name MsgStart and the message
name. Whether this is a real message to be handled by a
message handler, an interrupt, or any procedure call is of
course dependent on the hardware architecture.

6. DIFFERENCE TO OTHER MODELING
TOOLS

Modeling applications to abstract the implementation is
not a new issue and therefore we have to argue why we do
not use the solutions already available and why to develop
our own solutions. The main argument here is that all the
known simulation and modeling tools are quite efficient to
describe a simulation of the algorithms of an application,
but are all based on the specific schedulers. The
descriptions are restricted to these fix defined schedules
and a mapping to other schedules, especially for multi-
task architectures is not possible without a very complex
and detailed analysis of the description. Many schedule

decisions are taken dynamically during the run time of the
simulation, because the required information is not
explicitly specified in the model. This is of advantage for
a flexible and easy modeling, but avoids an efficient and
tailored implementation.
Other important information is not covered by most of the
tools. The real time requirements of the application itself,
but also the real time behavior of the interfaces of the
application model are needed to evaluate an efficient
mapping. The streaming algorithms are covered quite
sufficiently, but the control modeling is harder to abstract
and still needs more consideration for automatic
implementation design flows.

7. STATUS OF WORK

Within BenQ Mobile we have a complete model of a
WLAN 802.11a/b transmitter and receiver for the digital
part, and a basic tool chain, which can generate a
complete and running code for a multi-task hardware
architecture. These models are created with the simulation
tools MLDesigner and Simulink, where specific guide
lines where applied to create exactly the required
information and make the models independent of the
attached schedulers.
The next steps will focus on the timing considerations and
the creation of optimized mapping and schedule
algorithms.

8. REFERENCES

[1] R. Hossain, M. Weßeling and C. Leopold, “Virtual Radio

Engine - A Programming Concept for Separation of
Application Specifications and Hardware Architectures”,
Proceedings. 14th IST Mobile and Wireless
Communications Summit, Dresden, June 2005.

[2] H.-M. Bluethgen and C. Grassmann and W. Raab and U.
Ramacher, “A Programmable Baseband Platform for
Software-Defined Radio”, SDR’04 Technical Conference,
Phoenix, November 2004

[3] C. Grassmann, M. Sauermann, H.-M. Bluethgen and U.
Ramacher, “System Level Hardware Abstraction for
Software Defined Radio”, SDR’04 Technical Conference,
Phoenix, November 2004

[4] K. van Berkel et al., “Vector Processing as an Enabler for
Software Defined Radio”, SDR’04 Technical Conference,
Phoenix, November 2004

[5] S. Jinturkar et al., “Software Centric Approach to
developing wireless applications”, SDR’04 Technical
Conference, Phoenix, November 2004

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

