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1. ABSTRACT 

 
The mobile communication market is confronted with an 
increasing number of communication standards and a 
corresponding complexity for the mobile terminal 
applications. To cope with this complexity, the Software 
Defined Radio approach gains more and more attractiveness. 
The upcoming hardware platforms supporting a manifold of 
communication standards all have to compromise between 
the degree of supported flexibility and the required power 
consumption. These compromises cause a more complex 
programming interface, because parallelization potential, 
synchronization and latency time restrictions have to be 
evaluated in detail. The decoupling of the hardware platform 
from a specific application will also change the business 
models in the future, because software and hardware don’t 
have to be developed from the same company anymore. But 
to support this development, a new interface has to be 
defined to separate the required know how about the 
hardware platforms from the know how about the 
application specification. This paper will introduce one 
proposal and show development results. 
 
 

2. INTRODUCTION 
 
One important architecture feature for currently proposed 
hardware platforms for Software Defined Radio is the 
parallelization of processing power in very different kinds 
[2,3,4]. But this parallelization also leads to additional 
programming restrictions, which requires a detailed 
consideration of the parallelization potential of the 
application. To reduce these complexities and to speed up 
the development process, we suggest the separation of the 
software development flow into at least two different steps, 
such that developers need the experience only in either the 
hardware/software or in the application area. In one 
development step, the application is specified in a hardware 
independent way, and in a separate step, the hardware 
specific implementation can be done without knowledge 
about the application. 

This will allow to create new business models for 
programming Software Defined Radio platforms, because 
programming a mobile communication standard like UMTS, 
WLAN would not require any hardware know how anymore, 
and no complex programming with adaptation to any 
specific hardware details. The implementation step can be 
performed in a separate development step, and if the 
application description contains sufficient information, this 
step could be automated. To allow this automatism and an 
optimization in the implementation step, the application has 
to be specified in a way that the required processing is 
described in detail, but which still keeps the potential for 
hardware-specific optimizations. Within the SDR project at 
BenQ Mobile, we developed a new programming flow that 
supports this concept by defining a new modeling language 
and providing hardware specific adaptations compilation 
techniques. 
Considering specific hardware architecture features, we will 
show how to describe algorithms to keep the flexibility for 
an efficient mapping to all different hardware platforms. The 
required structures for data flow and control description with 
the corresponding schedule information is presented. 
Additional to the language itself the implementation requires 
a few separate steps for the insertion of the hardware 
information and about the required programming interface. 
A tailored implementation of the described algorithms on 
the specific hardware platform should be possible. 
 
With a complete description of WLAN 802.11a/b physical 
and MAC layer we can verify the concept of the 
programming flow and the programming language together 
with the development tools.  
 
Additionally we will show, why and how the business model 
for programming mobile platforms will be different for 
software defined radio platforms compared to current 
platforms, and that a standardized hardware independent 
interface for these platforms will be basic for the market 
success. 
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3. CHANGE OF BUSINESS MODEL 
 
The Software Defined Radio approach will not only change 
the separation of the hardware and software development, 
but also will change the future distribution of development 
between the different business areas. A semiconductor 
company, which will release a new hardware platform 
specific for a GSM or UMTS device, needed to create a lot 
of know how specific for this standards. This was 
implemented into the hardware, and the basic software will 
be implemented by this company, because hardware and 
standard know how is required for this development. The 
software development is restricted to this one standard, 
because the hardware does not support any other standard. 
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Figure 1: Application Modeling as Interface 

 
As soon as the hardware platform now is independent of the 
supported standards, the know how of the standards is not 
required anymore for the hardware development. The same 
is true for the software development. So why should this 
work still be performed by a semiconductor. To utilize the 
potential of such a flexible hardware, a lot of different 
software implementations are required, or otherwise the 
flexibility is not seen by the customers. To cover this huge 
development area probably many different companies with 
many different know how areas are required. Figure 1 shows 
a possible separation between application modeling and 
implementation on a hardware platforms. 
 

4. MODELING AND IMPLEMENTATION 
CONCEPT 

 
Modeling of any systems always try to simplify a description 
and hide details of components to abstract the overall 
description. The essential question with good modeling is 
always the right separation between the information that is 
really required at the model level and the information which 
can be hidden under a component, because it has no impact 
on the description of one layer above the component. In our 
concept we try to separate as much as possible between the 
information that is required for the different development 
steps required to create an implementation on the specific 
hardware architecture. Looking at Figure 2 we distinguish 
between different description domains. 
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Figure 2: Modeling Domains 

 
Functional Model of Application 
 
The highest level is the ‘Functionality Model’. This can be 
seen as the specification of an application covered by a 
model description. The information we see in this level of 
abstraction should be similar to the information of a 
specification document, but represented in a specific form 
and ready to be processed automatically. The abstraction 

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



should be that high, that all implementations of this 
application could be derived from this functional model. The 
model should not contain any algorithmic description of the 
signal processing as long as it is not required. The filters are 
not designed in this document, only the filter performance is 
to specify. And whether a convolutional code is decoded 
with a viterbi decoder or any other one is not important for 
the application as long as the receive performance is 
achieved. Currently this level of description is not within the 
focus of our work and still is a broad area for future 
academic work. 
 
Functional Algorithmic Model of Application 
 
The next lower domain level is the ‘Functionality 
Algorithmic Model’, which is based on an algorithmic 
description that will meet the specification. Here we can 
define in detail, which filter to take, the over-sampling rate, 
the dynamic range of the ADC, the frequency tracking or 
channel estimator algorithms, etc. We should define 
anything that affects the functional operation, but have to be 
careful to keep a high potential for different implementations 
on different hardware platforms. Especially the control of 
the algorithms is a crucial point, because this differs in a 
huge range considering several hardware architectures (see 
also chapter 5). Also real-time conditions are part of the 
description, but since we are still hardware independent in 
this domain, they are descriptive only and are separate from 
the functional description.  
 
Platform Architecture Model 
 
For an efficient implementation we also need a model of the 
hardware architecture. This model does have to contain all 
the information required for the right implementation 
decisions. This is not necessarily the real hardware 
architecture, but more the interface to the programmer. Here 
we find a database of all supported algorithms, with exact 
timings for each possible implementation, the potential of 
parallelization, synchronization strategies and timings, or 
external interfaces together with timing restrictions. 
 
Platform Specific Implementation Model 
 
The information of the functional algorithmic model and the 
platform architecture model can now be merged into a 
specific implementation for this platform. All information 
that is required for efficient decisions have to be part of the 
one or the other source model. The ‘Platform Specific 
Implementation Model’ describes in detail, how to control 
the whole application, which part is mapped to what 
resources, what will run in parallel, and where do we need 
synchronization between parallel tasks, and what 
synchronization methods should be used. From this model 

we should see the exact run-time behaviour as long as it is 
not data dependent. All decisions about implementation 
compromises are already taken (see also Figure 6). 
 
Implementation Program Code 
 
This is the real program code and not a model as described 
in the previous domains. The program code is just another 
representation of the platform specific implementation 
model, but it is now in the input format required by the 
native compiler tools, which should create exactly the 
behavior that was described in the implementation model. 
For the most hardware platforms it is a C like code structure 
and depending on the architecture with vector or multi-task 
extensions. The required adaptations to the operating 
system, the supported system libraries and data types are 
required to create this program code. The generated code 
does not have to be restricted to the functionality itself, but 
can also contain all the project files, compiler options, 
dependency files or the makefiles. 
 
 

5. A MODEL AND IMPLEMENTATION 
EXAMPLE 

 
The most reasonable interface in the previous development 
flow we see in the functional algorithmic model of the 
application. The choice of algorithms can be of course 
already hardware dependent, because they are more or less 
optimal for specific architectures. Nevertheless, a change of 
algorithms on this high level is not a crucial point and can 
easily be done compared to the implementation changes on 
mobile platform architectures. 
To see the requirements of a model language we will 
introduce a small application example and try to map this to 
two potential hardware architectures for mobile terminals. 
First we will have a look to potential architecture 
characteristics to be considered for mapping and scheduling 
strategies. 
 
Architecture Characteristics 
 
This architecture can be based on a large number of DSP 
units, all running with a relative low clock frequency. The 
synchronization of the DSP tasks, is done by software with 
no special hardware support. The strategy for the 
implementation in this case is to find as much parallel tasks 
as possible and trying to reduce the synchronization efforts, 
because latency time is a crucial point due to the low clock. 
With large vector execution units we have to find a high 
degree of data parallelism, which also affects the latency 
time. The level of potential vectorization can be very 
different for parts of the application. Another option are 
optimized accelerators for specific processing algorithms. 
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The flexibility is quite reduced and therefore the mapping of 
abstracted descriptions more difficult. 
 
The Application Examples 
 
We will introduce two small examples to show at least a few 
of the points that are important for the model specification 
and therefore the model language. The first one shows a few 
parallelization aspects and the second a control discussion. 
There are of course more points to consider, but this will 
give already an impression of the strategy we follow with 
our modeling. 
 
Figure 3 and Figure 4 sketch a streaming application, 
without the outer control of the stream. It consists of only 
three different algorithms in a signal processing chain. 
Considering two different choices for a parallelization of 
this application the compromises to be taken are shown. In 
the first case in Figure 3 the data stream is sliced into several 
blocks and mapped to parallel execution units. For the filter 
operation we can only skip the synchronization of the 
internal states if we overlap the input data with the size of 
the filter length. The demodulation has no internal data and 
can therefore run independent in each task. But for the 
Viterbi operation we need synchronization, because the 
internal states have to be accessed in the right sequence. 
 
In the second case (Figure 4) we parallelize the 
functionality, which changes the control a lot. The input 
stream of the filter now does not require any overlapped 
input, but now we have to synchronize between the 
functionality blocks. The granularity size of the 
synchronization (wait on 1 or n samples) should be 
dependent on the specific timings on the platform. 
Especially on platforms with accelerators, this structure will 
be applied. 
 
We see a very different control in these implementations, 
which can’t be part of the application model as long as we 
can not convert one control to another control description. 
Therefore the control should really be restricted to 
functional specifications. Also the block size of the 
components can be used for description, but only for 
descriptive reasons. It must be possible to convert these 
block sizes for tailoring them to hardware characteristics. 
One very important point is the scheduler, which is always 
strongly hardware dependent. This is a difficult issue, 
because we have to assume a scheduler for the description, 
but the description should also keep the potential to change 
the schedule as much as possible to cover a wide range of 
different architectures. A definition of a scheduler with as 
less assumptions as possible is an essential part of a model 
that can be mapped on many different architectures. 
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Figure 3: Parallelization of Data Stream 
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Figure 4: Parallelization of Functionality 

 
We solve this issue with the following strategy. There are 
two different schedule domains. One is the Synchronous 
Data Flow (SDF) domain, which is also known from other 
simulation tools, like Cossap, SPW or MLDesigner. All 
blocks could run in parallel as long as they consider the data 
dependencies. There is no data transfer between blocks 
independent of this data flow allowed, for example by 
memory access. In this case the right access sequence would 
not be defined. 
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Figure 5: Control Description Example with a Do-While Loop 
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Figure 6: Mapping the Do-While Loop to 2 Tasks 

 
 
The other schedule domain we define is the trigger (TRG) 
domain. In this case there is no data flow allowed between 
blocks, but just trigger exchanges. These triggers are just 
for describing the sequence of execution, but do not 
require an exchange of any particle. This way, there is one 
exact sequence how to execute the blocks, which allows 
arbitrary memory access. But additionally each 
dependency between blocks by memory accesses are 
visible in the application model and for the 
implementation step this can be analyzed and therefore the 
parallelization potential is still available. These domains 
can be mixed between the hierarchies, but not within one 
hierarchy level. 
 
The next example is focused on a loop control. The 
description of Figure 5 takes the data of an input buffer, 
sums the absolute values and compares them with a 
threshold and stores the current buffer offset. This is 
repeated as long as the threshold is not exceeded. Once 
this loop is left, there can be processed the AnyOp block 
and then it starts with finding the header in the buffer. 
Trying to map this algorithm to a multi-task hardware 
platform we could select the following solution: The 
iteration steps within the DoWhile_1 block are mapped to 
two different units, that are processing the iterations in an 

alternative way. Unit 1 takes the odd loop iterations and 
unit 2 the even iterations. 
 
The first problem is the RdBuf block, because it has an 
internal state for the buffer offset (bufOfs). The read and 
write access usually does not allow a parallel execution of 
succeeding loop steps. But in this case we know what will 
be written into this state and can use this information, to 
allow a parallel execution. Therefore this is important 
information and has to be part of the model. We describe 
this with a counter access type and additional access 
properties.  
 
The usual do-while loop algorithm is based on the 
evaluation of a condition at the end of one loop iteration. 
This would avoid a parallel execution of several loop 
iterations. Therefore it is important to make it visible, 
where this condition (condFlag) is determined to evaluate 
this condition as early as possible. And when additionally 
the implementation is structured in a way that the changes 
performed within the iteration step can be undone, then 
we have a higher potential for parallelization options. 
 
The DoWhile operation is specified just by convention of 
the block name and the memory item named condFlag. 
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In Figure 6 we see that the second loop step is started in 
task 2 before the first one has finished and the loop 
condition is evaluated. This can be done, because there is 
no change of global data. The only operation to be 
processed sequentially is the Thresh block. This is the 
information that has to be exchanged between the two 
tasks, and therefore requires a defined sequence. We 
framed this block with the WaitSync and the SendSync 
blocks. In this case we see that a further parallelization to 
3 or more tasks would not increase the performance 
because the required synchronization would avoid an 
efficient parallel execution. But other synchronization 
mechanisms would be possible as long as we exactly see 
what has to be done for this application.  
The saveOfs block should store the last buffer offset 
before the threshold was exceeded. Because this is a write 
only access to a memory, which is not used anywhere else 
in this loop we can skip this operation as long as it was not 
the last loop. 
The AnyOp block does not have any dependency on the 
loop block and therefore we are free to execute this block 
before or in parallel to the loop iteration. In contrast to 
this the FindHdr block has a potential memory read/write 
conflict on the startSync memory. Therefore this block has 
to wait on the last activation of the saveOfs block within 
the loop. 
The MsgStart block is required to define when the 
processing is to be started. The additional information is 
of course, how many times and in which time periods we 
will get a message to start the whole operation. If we 
receive such a message during the execution, the 
considerations regarding mapping to tasks will change 
significantly. The type of the description in the application 
is just a block with the name MsgStart and the message 
name. Whether this is a real message to be handled by a 
message handler, an interrupt, or any procedure call is of 
course dependent on the hardware architecture.  
 
 

6. DIFFERENCE TO OTHER MODELING 
TOOLS 

 
Modeling applications to abstract the implementation is 
not a new issue and therefore we have to argue why we do 
not use the solutions already available and why to develop 
our own solutions. The main argument here is that all the 
known simulation and modeling tools are quite efficient to 
describe a simulation of the algorithms of an application, 
but are all based on the specific schedulers. The 
descriptions are restricted to these fix defined schedules 
and a mapping to other schedules, especially for multi-
task architectures is not possible without a very complex 
and detailed analysis of the description. Many schedule 

decisions are taken dynamically during the run time of the 
simulation, because the required information is not 
explicitly specified in the model. This is of advantage for 
a flexible and easy modeling, but avoids an efficient and 
tailored implementation. 
Other important information is not covered by most of the 
tools. The real time requirements of the application itself, 
but also the real time behavior of the interfaces of the 
application model are needed to evaluate an efficient 
mapping. The streaming algorithms are covered quite 
sufficiently, but the control modeling is harder to abstract 
and still needs more consideration for automatic 
implementation design flows. 
 
 

7. STATUS OF WORK 
 
Within BenQ Mobile we have a complete model of a 
WLAN 802.11a/b transmitter and receiver for the digital 
part, and a basic tool chain, which can generate a 
complete and running code for a multi-task hardware 
architecture. These models are created with the simulation 
tools MLDesigner and Simulink, where specific guide 
lines where applied to create exactly the required 
information and make the models independent of the 
attached schedulers. 
The next steps will focus on the timing considerations and 
the creation of optimized mapping and schedule 
algorithms. 
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