
CASE-STUDY OF A XILINX SYSTEM GENERATOR DESIGN FLOW FOR
RAPID DEVELOPMENT OF SDR WAVEFORMS

David Haessig (BAE SYSTEMS, CNIR, Wayne, NJ, USA, david.haessig@baesystems.com);

Jim Hwang, Sean Gallagher, Manuel Uhm (Xilinx, Inc., San Jose, CA,
jim.hwang@xilinx.com, sean.gallagher@xilinx.com, manuel.uhm@xilinx.com);

ABSTRACT

This paper describes a case study examining two distinct
design processes for implementation of FPGA-based
software defined radio subsystems. We compare a
traditional RTL design approach with a model-based design
flow involving automatic code generation using System
Generator. Both design processes were applied to the
development of a common SATCOM waveform: Mil-Std-
188-165a. Results indicate a 10:1 improvement in
development efficiency using System Generator, based on
quantitative comparison of the time consumed in developing
system simulations, algorithm documentation, code design
and debugging, hardware implementation, and algorithm
verification. The time savings associated with
performance analysis using hardware co-simulation is also
assessed.

1. INTRODUCTION

FPGAs have become widely used in the design of physical
layer and baseband processing for software-defined radios.
However, prevailing programming models, derived from
design flows used to design ASICs, have traditionally
limited accessibility of FPGA-based signal processing
subsystems to designers with a background in chip design.
This situation has been changing over the last five years
with the emergence of a new class of FPGA programming
flows based on high level modeling in MATLAB and
Simulink. The Xilinx System Generator for DSPTM, the
first Simulink-based tool for FPGA design introduced in
2000, and subsequent tools share the common purpose of
bringing FPGA technology to a wider audience, while
increasing designer productivity, especially in the area of
modem development for software-defined radios (SDR).
For the radio designer who lacks expertise in traditional
ASIC hardware design flows, these tools provide a means
for architecting, synthesizing, and validating high
performance systems employing FPGAs. For the more
traditional FPGA designer, these tools can provide
significant productivity improvements over traditional
methods, e.g., by enabling better exploration of the
architecture space and creation of more realistic and robust
test harnesses. Whilst productivity improvements have

been reported anecdotally and in internal corporate
documents, there have been few published results that
attempt to quantify productivity improvements derived from
new design flows [2].

 In this paper we present a case study comparing a
traditional VHDL-based design flow to a System Generator
based FPGA design process, using a subset of the military
SATCOM waveform Mil-Std-188-165a as test application.
We compare the two design flows in terms of waveform
specification and documentation, design and performance,
and debugging effort (in both the simulation environment
and hardware). In addition, we identify ways in which
traditional FPGA tools (e.g., logic synthesis) continue to
play fundamental roles. The notion of SCA Rapid
Development is described, and we indicate areas in which
FPGA tools must improve or expand in order to fully
service the SDR community, especially regarding the
hardware/software interface and the control plane (e.g.,
SCA compliance).

2. FPGA DESIGN FLOWS

Traditional FPGA design flows have historically mirrored
processes originally developed for building application-
specific integrated circuits (ASICs). An untimed system
model is usually created in an imperative language like C or
MATLAB. This design phase represents the primary
opportunity for algorithm exploration, and typically
provides test vectors for validating the implementation. The
initial implementation is typically described in a hardware
description language (HDL) like VHDL or Verilog at a
register transfer level (RTL) that allows a behavioral (as
opposed to purely structural) logic description. The RTL
description typically involves instantiation of reusable
components called intellectual property (IP) blocks (e.g.,
Viterbi decoder, FFT), often provided by the FPGA vendor,
to ensure efficient implementation of complex functions on
a particular device fabric. Functional conformance testing
to the original system model is done using HDL simulation
by creating an HDL test harness that imports test vectors
provided by the system model. This loose coupling
between system model and implementation makes
debugging difficult and time-consuming. For example, test
vectors provide only an input/output relation, so it is often

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

necessary to rework the system model (often written by an
entirely different design team) in order to extract internal
state or signals for debugging.

 In contrast, design flows based on System Generator
and similar tools derive a hardware realization directly from
the system model via automatic code generation [1][3].
Sometimes referred to as model-based design [4], such high
level design approaches aim to increased productivity (from
higher levels of abstraction) and reliability (from automatic
code generation and more robust test methodologies).
System Generator provides a more attractive programming
model than HDLs for a signal processing engineer, as well
as a greater ability to explore architecture and debug
complex algorithms realized in hardware. Embedded in
Simulink [5], System Generator provides abstractions and
tool interfaces expressly designed to facilitate hardware
design [7]. System Generator provides libraries of Simulink
blocks (the Xilinx Block Set) with bit and cycle true
simulation for a wide range of functions ranging from
communication algorithms (e.g., Viterbi decoder,
interleaver), DSP algorithms (e.g., FFT, FIR filter), down to
lower level building blocks for memories, arithmetic
structures, and logic. Since the system model is captured in
Simulink, the debugging capabilities of that tool can be
brought to bear, including data visualization and test
harness creation.

 System Generator also extends Simulink through
standard APIs to interface directly to HDL simulation tools
(enabling import of HDL modules) and directly to hardware

platforms (hardware co-simulation). In System Generator,
hardware co-simulation entails automatic generation of an
FPGA bitstream from Simulink, as well as its incorporation
back into Simulink itself. This allows the user to exploit
FPGAs to significantly accelerate simulation, while also
providing the ability to validate a design working in
hardware, all without necessarily having to invoke a
traditional FPGA tool explicitly.

3. CASE STUDY RESULTS

3.1 Problem Description and Motivation

BAE Systems CNIR, a developer of advanced military
communication radio systems, continually evaluates tools
and design processes that offer potential for improved
efficiency. A project to implement a SATCOM waveform
on the BAE C4ISR radio offered an ideal opportunity to
evaluate a new model-based design approach using System
Generator. This design flow made extensive use of the
system model including design capture, system simulation,
and auto-generation of RTL VHDL, providing opportunity
for significant time and cost savings. Two parallel
development efforts were performed. The waveform was
implemented to the same set of requirements using both a
traditional and a model-based development flow. Each
design was carried through to implementation on hardware.
Effort for each design was measured in man-hours, and each
developer noted activities that were particularly easy or
troublesome. Upon completion, the developers compared
notes and noted advantages or disadvantages to their

Scrambler

LVDS
bit stream &

cloc Differential
Encoder

In
t
Bi

RS
Encoder

Matrix
Interleaver

Convol -
tiona

Encode

Bit
t
In

QA
Modulator

Fram
Syn
Word

Descrambler Differential
Decoder

Bi
t
In

RS
Decoder

Matrix De -
Interleaver

Viterb
Decode

In
t
Bi

QAM De -
Modulator

Syn
Detec

DAC

ADC

LVDS
bit stream &

cloc

Scrambler

LVDS
bit stream &

cloc Differential
Encoder

In
t
Bi

RS
Encoder

Matrix
Interleaver

Convol -
tiona

Encode

Bit
t
In

QA
Modulator

Fram
Syn
Word

Descrambler Differential
Decoder

Bi
t
In

RS
Decoder

Matrix De -
Interleaver

Viterb
Decode

In
t
Bi

QAM De -
Modulator

Syn
Detec

DAC

ADC

LVDS
bit stream &

cloc

Figure 3.1 – Generic Block Diagram of the SATCOM Waveform

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

particular design flow, as described below.

A block diagram of the waveform is given in Figure 3-1.
Elements that are implemented include:
scrambling/descrambling, differential encoding/decoding,
Reed Solomon encoding/decoding, interleaving/de-
interleaving, convolutional encoding/Viterbi decoding, and
RS frame synchronization. A subset of the standard
requirements was implemented, limiting the uncoded data
rates to 16, 64, 256, and 8096 kbps, rates achievable by
varying the input clock, and requiring only a single set of
modulation and coding parameters:

• QPSK
• Reed Solomon (219, 201)
• Viterbi ½ rate

To clarify the evaluation, it was decided to separate the
effort into the following distinct categories, each covered
separately in sections that follow.

• Signal Processing Chain
• Clock generation and issues
• Hardware interfaces

A single individual worked each effort, one handling the
traditional RTL development, and another the model-based
RTL development. Developer productivity can vary

significantly between individuals, but we believe both were
evenly matched in the abilities brought to bear on this
problem. The individual using traditional methods was a
highly experienced RTL designer, having over 15 years
experience in the field, including experience in the
implementation of communication links. The individual
employing model-based methods was also an experienced
RTL developer and an expert in using System Generator,
but had no prior experience in the implementation of
communication links.

3.2. Performance Comparison

3.2.1. Signal Processing
To facilitate accurate measurement of the hours spent in
producing a working design, we have partitioned the
waveform into functional blocks, with each developer
recording or estimating the time spent on that function
separately. Additionally, the development process was
broken into sub-categories capturing the typical sequence of
tasks involved in RTL development. As given in Table 3.1,
these categories are:

-- Algorithm & Interface Specification /Documentation
-- Module Design
-- Modeling, Simulation & Design Verification
-- VHDL Coding
-- VHDL Behavioral Verification

 Table 3.1 – Comparison of Development Man-Hours: Traditional versus Rapid Development Approach

 Development Time -- Signal Processing Chain (man-hours)
Traditional Approach

Algorithm
Interface
Specification /
Documentation

Module Design
Definition

Modelling,
Simulation &
Design
Verification VHDL Coding

VHDL Code
Behavioral
Verification

Hardware
Integration &
Lab Testing Notes

Reed Solomon RS Encode 40 40 0 40 60 20 Integrate purchased IP
Reed Solomon Decode 20 80 0 60 100 20 Integrate purchased IP
Scrambler / Descrambler 1 1 0 1 6 3
Convolutional Encode 1 1 0 1 1 1
Viterbi Decode

8 8 0 8 16 24
Integrate in-house IP,
development not shown

Differential Encoder / Decoder 1 1 0 1 4 2
Interleaver / Deinterleaver 40 16 0 16 36 60
PSK modulator (2,4,8) 5 5 0 4 3 3
RS frame Sync 4 6 0 4 6 4

TOTALS: 120 158 0 135 232 137 782

Rapid Development Approach
Algorithm
Interface
Specification /
Documentation

Module Design
Definition

Modelling,
Simulation &
Design
Verification VHDL Coding

VHDL Code
Behavioral
Verification

Hardware
Integration &
Lab Testing

Reed Solomon RS Encode 1 0.25 2 0 0 * Integrate Xilinx Core
Reed Solomon Decode 1 0.5 3 0 0 * Integrate Xilinx Core
Scrambler / Descrambler 0 0.25 3 0 0 *
Convolutional Encode 0 0.25 1.5 0 0 *
Viterbi Decode 0 0.5 2 0 0 * Integrate Xilinx Core
Differential Encoder / Decoder 0 0.25 1 0 0 *
Interleaver / Deinterleaver 0 0.5 2 0 0 * Integrate Xilinx Core
PSK modulator (2,4,8) 1 0.5 4 0 0 *
RS frame Sync 1 4 16 0 0 *

TOTALS: 4 7 34.5 0 0 45.5

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

-- Hardware Integration & Lab Test
These columns require some explanation. The first column
contains the time spent up front in architecting the overall
design, defining, for example, memory types and placement
between modules, clocking requirements, state machines for
control, etc. In addition, this column includes time defining
the interface requirements between modules. The second
column, ‘Module Design’, contains time expended in
architecting and designing the individual modules. For
example consider the design of the interleaver, a module
involving double buffering, addressing and/or reordering,
etc., all decisions requiring time and thought to produce.
The column ‘Modeling, Simulation & Design Verification’
covers the work to simulation test the module prior to
VHDL coding to verify that the algorithm is designed and
operating properly. The next, ‘VHDL Coding’, is self
explanatory. ‘VHDL Behavioral Verification’ is the effort
to test the VHDL by performing a behavioral simulation,
verifying that the input-output behavior matches the results
expected. Finally, ‘Hardware Integration & Lab Testing’ is
that time spent verifying the operation of each module on
the part itself, a step that is done to ensure that neither
propagation delays nor timing errors are altering the
behavioral operation.

3.1.1.1 Interpretation of Results
The accumulated hours are shown at the right side of the
table (encircled): 782 hours for the traditional versus 45.5
hours for model-based design. As stated, both designs
were carried through to implementation on hardware. The
traditional design was implemented on a BAE custom radio,
consuming 137 hours for integration and test. The model-
based design was loaded directly onto a WildCard3000, a
PCMCIA card containing a Xilinx 2V3000, and
consequently no time was required. To be fair, if one
removes the 137 hours spent on hardware integration, we’re
left with 645 hours, which is still well over a 10:1
improvement – a remarkable result.

 Some of the key differences between these two design
methodologies are revealed by where the hours were spent.
Note that with the tradition flow, significant time is spent in
the first two columns, architecting the overall design, the
interfaces, and in designing the individual modules. It
should be noted that both designs had the benefit of the
following cores:

-- Reed Solomon Encoder
-- Reed Solomon Decoder
-- Viterbi Decoder

Thus neither had an unfair advantage due to significant
development associated with these functions. Nevertheless
the traditional designer spent considerable time on the Reed

Solomon functions. This occurred due to the effort
required to construct the non-integer based clocks and clock
enables required by this module. This did not occur with
System Generator as it includes an algorithm used to
generate clock enables automatically (without human
intervention) based on the various clock domains present in
the design.

Also noted is the small amount of time consumed by
the model-based designer in these same categories. In this
application the modules provided by System Generator met
the needs of the user, and no time was required to study and
understand the inner workings of the block, or to create a
custom block. This was not the case, however, with the RS
Frame Sync, which required some custom development
(construction of the algorithm using foundational building
blocks such as registers, multiplies, logic, etc.) and testing.

 Another key observation is revealed in the third
column. Notice that no time was spent by the traditional
designer to model and simulation test the modules upstream
of VHDL coding. Often this step is skipped because of
time constraints and very tedious work required to model
the algorithm faithfully, in a bit-true and cycle-true fashion.
And when all this work is done, there is no direct
connection to the final product, so it is perceived as a less-
essential, less-productive step. Errors in the design must
then be caught at the VHDL Behavioral Verification stage.

 On the other hand, when following the model-based
process, the designer is inclined (actually required) to build
a complete, bit-true, cycle-true behavioral model, because
that model represent his final product. The discovery and
removal of errors and bugs at that step occurs as a
consequence. Notice that this step consumed the greatest
number of hours when using System Generator and model-
based design. This is typically a process of “build a little,
test a little”. As modules are brought into the design, time
is required to “get it to work” properly. Why is this
advantageous? Debugging at this stage is faster and easier
than at the VHDL stage. Errors are discovered upstream of
compilation and within a graphical user environment.
Debugging VHDL behavioral models requires synthesis of
the VHDL (i.e. a compilation) and is less intuitive. Thus,
considerable time is spent waiting for synthesis to complete
and in locating and correcting bugs. This is evidenced in
the “Behavioral Verification” column of the Traditional
Development effort, where more time was spent than any
other category, time avoided with model-based design flow
which forces one to address errors prior to VHDL coding
(column 3).

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

3.2.2. Clocking
 System Generator determines a clock running at the highest
rate and builds enabling logic to throttle any number of
lower rates as needed [7]. Thus, the task of deriving
multiple clocks is removed from the designer by default.
On the other hand, with traditional design, the designer is
responsible for generating all clocks, which in the present
application was complicated by the multiple clocks needed
to handle non-integer data rates across the Reed Solomon
coder/decoder. Carrying clock enables through by hand is
often difficult for a human, and well suited for machine
generation.

3.2.3. Hardware Interfaces
Hardware interfacing is one of the more often difficult
aspects of system integration. In this application all of the
interfaces were the Low Voltage Differential Signaling
(LVDS) type. At the time this paper was written, neither
design was implemented through to the LVDS interfaces;
however, it is anticipated that neither would exhibit an
advantage, and that both would require the same amount of
time to implement. One should note that with System
Generator, some COTs vendors provide interface blocks,
allowing the easy connection of a Simulink model with a
System Generator segment targeted to run concurrently on
their FPGA card, with no effort required in developing
driver interfaces.

3.2.5 Hardware Co-simulation Benefits
The System Generator version of this waveform design,
implemented on a Virtex-II Pro 20 (2VP020) consumed
27% of the part and ran easily at 100 MHz (far exceeding
the 8 MHz clock rate required to achieve the specified data
rates). Hardware co-simulation in free-running clock mode
[6] increased the waveform simulation speed by roughly
three orders of magnitude over a pure software simulation.

4. SCA COMPLIANCY

The Joint Tactical Radio System is a prime driver of
software defined radio technologies [8]. For this system,
the software layer controlling the system is known as the
Software Communication Architecture (SCA) [9]. In this
study a SATCOM waveform was built using System
Generator and run on generic co-simulation hardware. It
was not SCA compliant. Implementation within an SCA-
compliant radio would require the addition of “wrapper
code” adhering to the SCA standard, which represents a
significant effort by a designer knowledgeable and skilled in
the SCA. It is therefore of considerable interest to explore
extensions to the design flow that generates SCA-compliant
code automatically, using System Generator for
development of embedded hardware and firmware and

Real-Time Workshop (MathWorks) for generation of
application C code.

 Many waveform developers would prefer to remain
insulated from the intricacies of the SCA, in part because .
there are no clear design guidelines in this regard today.
The current JTRS endorsed specification (SCA Version 2.2)
does not specify all aspects of waveform implementation
involving FPGAs and DSP processors. Version 3.0 was
intended to address this issue, particularly the Specialized
Hardware Supplement, but it is not clear at the time of
writing whether or not Version 3.0 will be adopted by JTRS
or industry. Other proposals, e.g., OCP-IP, have also been
proposed.

 Such uncertainty in the specification presents an
opportunity for a toolset that can automatically generate
VHDL component-level wrapper code for FPGAs or
equivalent C code for DSP processors. Such tools could
improve waveform developer productivity and significantly
lower the cost of development, test and verification
associated with an SCA-compliant radio. Furthermore, a
tools-based approach would be far more scalable than an
approach requiring each waveform developer to track the
emerging specification and to write SCA-specific code for
each waveform. A tool such as this would take the output
from System Generator and automatically generate the code
necessary to make the waveform SCA-compliant. The onus
of ensuring SCA compliance would then fall on the tool
supplier rather than the waveform developer.

 Future extensions of the current work include
exploration of SCA rapid development approaches. We
envision a proposal to build an open-source tool as
described above. A further outcome of this study would be
design guidelines for development of SCA-compliant
waveforms. We expect to report on this work at a future
SDR Forum Workshop or Technical Conference.

5. CONCLUSIONS

We have presented a detailed case study performed to
quantify benefits of adopting a System Generator design
flow for FPGA-based signal processing systems. In the
development of even a simplified MILSAT waveform, we
observed a 10:1 productivity improvement over a traditional
RTL / IP core design flow. As system complexity and
device complexity continue to grow, the need for higher
level tool flows for embedded hardware and software
systems will become increasingly important. It is expected
that industry case studies such as this should continue to
provide considerable value in sharing knowledge of the
“state-of-the-art”.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

6. REFERENCES

[1] C. Dick and J. Hwang, “FPGAs: A Platform-Based Approach

to Software Defined Radios”, Chapter in Software Defined
Radio: Baseband Technologies for 3G Handsets and
Basestations, John Wiley & Sons, Ltd, 2003.

[2] J. Frigo, M. Gokhale, T. Braun, J. Arrowood,
“Comparison of High-Level FPGA Design Tools for a
BPSK Signal Detection Application”, Proceedings, SDR
Forum Technical Conference, 2003.

[3] J. Hwang, B. Milne, N. Shirazi, J. Stroomer, “System Level
Tools for FPGAs,” Proceedings FPL 2001. Springer-Verlag
2001.

[4] The MathWorks, Inc., “About Model-Based Design”,
http://www.mathworks.com/applications/dsp_comm/descripti
on/mbd.html.

[5] The MathWorks, Inc., “Simulink Documentation”,
http://www.mathworks.com/access/helpdesk/help/toolbox/sim
ulink/.

[6] Xilinx, Inc., “Hardware Co-Simulation Clocking”,
http://www.xilinx.com/products/software/sysgen/app_docs/us
er_guide_Chapter_4_Section_3.htm

[7] Xilinx, Inc., “System Generator User Guide”,
http://www.xilinx.com/products/software/sysgen/app_d
ocs/user_guide.htm.

[8] JTRS Overview,
http://jtrs.army.mil/sections/overview/fset_overview.html

[9] SCA Technical Overview,
http://jtrs.army.mil/sections/technicalinformation/fset_technic
al_sca.html

7. ACKNOWLEDGEMENTS

Special thanks to Bob Regis, who developed the waveform
using traditional RTL methods and provided many insights
as to the relative merits of these techniques. Bob was
assisted by Andrew Comba who developed a pure Simulink
model of the waveform.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

