

 A FRAMEWORK FOR RE-CONFIGURABLE FUNCTIONS OF A
MULTI-MODE PROTOCOL LAYER

Marc Schinnenburg, Fabian Debus, Arif Otyakmaz, Lars Berlemann, Ralf Pabst

Communication Networks, RWTH Aachen University
{msg | fds | aoz | ber | pab}@comnets.rwth-aachen.de

ABSTRACT

 This paper presents a framework for building re-
configurable protocol stacks. A high degree of re-
configurability is achieved through composing complex
behavior of a communication system using Functional
Units. A uniform interface allows these units to be
connected to form a Functional Unit Network. The
requirements and the resulting interfaces for such units are
subject to this work.

1. INTRODUCTION

 The increasing complexity in today’s software
systems has led to a number of new methods in software
development in the last years. The goal of modern
software design is to create systems consisting of small
units. Every unit should have one cohesive responsibility,
provided through a preferably slim and simple interface.
The avoidance of tight coupling and the focus on
testability leads to units that are easier to build, to test and
to maintain. Thus the development and maintenance costs
are reduced. Further, the quality of software is increased.
As a second benefit reusability of units is improved if
dependencies between units can be reduced.
 Ubiquitous radio access at high data rates and low
delays is the customer’s expectation at next generation
communication systems. To meet this expectation the
protocols of future communication systems need to
efficiently exploit the available spectrum in a dynamic
way. The need to achieve optimal performance in a
variety of different environments (e.g., indoor/outdoor)
will force devices and their protocols to adapt themselves
to the current situation by using different modes, i.e.
Radio Access Technologies (RAT). The integrated project
Wireless World Initiative New Radio (WINNER) (funded
under the 6th Framework research funding Program (FP6)
of the Commission of the European Union) focuses on
different aspects of such an adaptive and flexible air
interface [1].
 To achieve the highest degree of adaptivity, the ideal
protocol stack should be completely re-configurable. The
complexity inherent to such systems raises the same

problems as found in software development. This paper
therefore tackles the problem of re-configurability using
similar methods as described above. A protocol stack
consisting of small and independent units, here called
Functional Units (FUs), with cohesive responsibility is
therefore one of the key technologies for next generation
radio networks.
 This paper will introduce a framework for re-
configurable protocol functions of a multi-mode protocol
layer. Thereby, our focus is on the Data Link Layer
(DLL). The framework can be seen as a complementary
technology to Software Defined Radios (SDR) for higher
layers [2].
 Section 2 discusses the proposed interface of FUs.
Especially data handling of and interconnecting between
FUs to form a Functional Unit Network (FUN) is
described.
 Section 3 describes different kinds of dependencies
between FUs. Since dependencies between units introduce
tighter coupling, the section describes situations where
dependencies are necessary and gives guidelines how to
cope with them.
 In section 4 a technique is presented used to
instantiate FUs dynamically for different flows.

2. FUNCTIONAL UNITS

 As discussed in [3] DLLs of protocol stacks of
wireless communication systems in general comprise
among others the following set of functions: Automatic
Repeat request (ARQ), Segmentation and Reassembly
(SAR), scheduling, multiplexing and buffering. Having
identified such a set of FUs a necessity for common
interfaces arises. How should FUs be organised to support
such a wide range of different tasks? How can these units
be connected in a generic way to support the
configuration of larger systems based on such units only?
 To answer these questions, we start analyzing the
most fundamental requirements and describe interfaces
that allow these requirements to be met. We will describe
applications of the defined interfaces and how the FUs
can be used to compose complex systems based on these
interfaces. In cases where the interfaces are still too weak,

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Figure 1. Basic compound handling interface.

ou
tg

oi
ng

 d
at

a
flo

w

in
co

m
in

g
da

ta
 fl

ow

Figure 2. FU connections for data handling.

we will formulate new requirements and present
extensions to the interface that meet the newly identified
requirements.

2.1 Data Handling

 The most fundamental requirement for FUs is the
ability to handle data. In the following we will denote a
basic data unit that is transmitted between FUs a
compound. For now a compound can be seen as some
chunk of data of variable size.
 FUs as part of a protocol stack may receive
compounds for processing before and after such a
compound has been transmitted over the air-interface. The
first case is called outgoing data flow, while the latter case
is referred to as incoming data flow. The interface for
handling compounds has to provide services for accepting
data in both directions, incoming and outgoing. The
interface must further enable the FU to distinguish
between compounds of both flows. To support that, it is
advisable to choose two different methods:
DATAreq(Compound) for compounds in the outgoing
flow and DATAind(Compound) for compounds in the
incoming flow as depicted in figure 1.

2.2 Functional Unit Networks

 The methods DATAreq and DATAind are called by
other FUs to propagate compounds through an FU
Network (FUN). Every FU contains two sets of references
to other FUs: The connector set and the deliverer set. FUs
call the DATAreq method of other FUs in their connector
set to pass on compounds in the outgoing flow and call
DATAind of FUs in their deliverer set to pass on
compounds in the incoming flow (see figure 2).
 The FUs can be connected to multiple units in both
directions to support multiplexing and scheduling,
realized by choosing different strategies to select a unit for
compound delivery.

 An FUN can now be constructed by choosing FUs
from a toolbox of FUs and connecting them, defining their
connector and deliverer sets.
 It is possible to further identify a set of units as sink
for outgoing flows: Compounds delivered to these units
are leaving the FUN for delivery to lower layers. Another
set of units may be identified as sink for incoming flows:
Compounds delivered to these units are leaving the FUN
for delivery to higher layers. Consequently, an FUN can
be seen as a bi-directional data processing network. Input
to the network is injected using either the DATAind or
DATAreq method of any of the FUs. The output of the
network is measurable at the sink units.

2.3 Commands

 Whenever a compound arrives in an FU, the FU gains
control over the compound and can realize different
behaviors by handling the compound accordingly. It may
choose to mutate or drop the data unit, buffer it, forward it
to other FUs or inject new data units into the FUN.
 A large class of FUs is characterized by enriching the
compound, adding control information on outgoing
compounds and reinterpreting the added information on
incoming compounds. Usually these FUs provide a
transparent connection to other FUs above. An ARQ
protocol for example adds sequence numbers as control
information to the compounds of the outgoing flow. It
creates and injects compounds as acknowledgements in
order to reply to compounds of the incoming flow. The
ARQ instance in the peer FUN reinterprets the added
control information, delivers valid information frames to
some FU in the deliverer set and consumes dedicated
compounds containing acknowledgements. The control
information added by FUs is called command. The
command can have different characteristics for different
purposes, like an information command or an
acknowledgement command for the ARQ.
 The ARQ in our example is completely invisible to
the FUs above. Even underlying FUs do not need to have

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

knowledge about the control information added by ARQ
implementations. The only FU that is required to be able
to handle the ARQ command is the peer unit of the ARQ.

Figure 3. Partial copy of a command pool for relaying.

 Sometimes, however, FUs add commands that are
important to other FUs either in the peer FUN or within
the same FUN. Connection identifiers may serve as an
example for such information. An FU that decides to
which hop to send a compound would require being able
to retrieve the final destination which is part of a higher
level routing command. This leads to the requirement of
having a possibility to access commands added by other
FUs.
 Note that FUs cannot simply reinterpret control
information added by other units to the compounds’ data.
FUs have no information about the layout of the FUN and
therefore also have no information about the layout of the
combined control information within the compound.
There might be an arbitrary number of FUs in between the
unit that added the control information and the unit that
intends to access it. Additionally, the data might have
been heavily modified by other FUs in between.
 The solution is to attach a set of commands to each
compound. Since an FUN has a known number of
connected FUs, there is a known set of potential
commands. The set containing all the commands of every
FU within an FUN is called command pool. Now the
union of a data unit and a command pool is denoted a
compound.
 Initially all commands within the command pool of a
compound are inactive. The data attached to a compound
is set to the data unit delivered by higher layers for
transmission. A data unit is initially empty for compounds
being created/injected in the FUN (e.g., ARQ
acknowledgements). Parts of the command pool get
activated during the propagation of a compound through
the FUN, where every FU activates its command when in
control. At the same time FUs can mutate the data. A set
of activated commands ordered by their time of activation
is named a command sequence. A FUN is required to be
free of cycles to assure that commands do not get
activated more than once. Hence, an unambiguous
command sequence must exist in which single commands
may be retrieved.

2.3.1 Relaying of Compounds
 Note that the activation of commands from a non-
extendable command pool introduces the problem of
implementing relaying FUs [4]. Having a single point of
activation implies that compounds may not cross the
borders between the two networks from incoming to
outgoing data flows. No FU may forward a compound
using DATAreq, when received via DATAind. This is a
direct consequence from the activation of commands.

Otherwise, it would be possible for the compound to be
delivered to a FU that already activated its command.
 To implement relaying, the relaying FU has to inject
a copy of the received compound. It has only those
commands activated and copied, that are in the command
sequence before the relaying unit. The rest of the
commands will stay inactivated. See figure 3 for an
overview of the activation status of commands within a
compound before and after being processed by a relaying
FU.

2.3.2 Coding of Commands
 Besides commands being accessible by other FUs,
delaying the coding of commands as part of the data has
another advantage: Often information in communication
protocols is not transmitted explicitly as a stream of bits,
but implicitly through the choice of radio resources
element like time, frequency, space or code. In a Time
Division Multiple Access (TDMA) system for example
with fixed slot reservations for connections, it would be
useless to explicitly transmit connection identifiers.
Nevertheless the information is indirectly transmitted
through the choice of a specific slot. Such a slot must be
chosen at some point of time based on the connection
identity. A command provided by a connection aware FU
may contain the connection identifier. But the choice how
to transmit the connection identity is delayed, and the
outcome may be different depending on the system.
 As we have shown, attributes of commands serve
different purposes. Some are meant to be transmitted,
while other attributes are only meaningful within an FUN
and are not meant to be sent to the peer FUN. In order to
be explicit about the purpose of a command attribute, we
divide the attributes of commands in two distinct sets: The
local on the one hand and the peer set on the other hand.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

2.4 Flow Control

Figure 4. Intra node flow cotntrol.

 In practice every FU has only a limited capacity to
store compounds and often FUs do not need to store
compounds at all to accomplish their task (e.g. forward
error correction units). The physical layer on the other
hand introduces a bottleneck, limiting the amount of
information transmitted and thus the rate at which
compounds must be handled.
 Without any flow control mechanism within an FUN,
compounds could leave the FUN with much higher rates
than the physical layer could possibly handle. This would
result into a dropping of compounds in the physical layer.
Buffering between the layers is not an adequate choice
either, since the delay between processing the compound
in the FUN and data transmission would increase. The
increase of delay has several drawbacks. First, timeout
mechanisms would not work as expected. Retransmission
timers could lead to retransmission of compounds
although the last transmission of these compounds has not
even been started. Such compounds would be added to the
buffer several times, leading again to increasing delays.
 Another drawback is that decisions of FUs based on
feedback of the physical layer would loose accuracy; and
gathered information would be outdated, when the
consequences of the decisions would finally manifest.
 Thus the need for an intra layer flow control arises.
FUs must have the ability to prevent other units from
delivering compounds to them, when they decide not to
accept additional compounds.
 There are different reasons for an FU to decide not to
accept compounds. All these reasons are direct
consequences of the limited resources of the physical
layer and thus only apply for outgoing flows. Resources in
higher layers are usually not a bottleneck for incoming
flows.

2.4.1 The Intra Node Flow Control Protocol
 To implement flow control between FUs, two
methods are necessary:
• isAccepting(Compound) Boolean
• wakeup()
 Before an FU is allowed to deliver a compound to
another FU using DATAreq, it has to ask for permission
using the isAccepting method. If the response is
negative, it may not send a compound to the questioned
unit.
 It is essential that the FU asks for permission for a
concrete compound, since the answer may depend on the
content of the compound. An FU may be willing to accept
compounds of some type, refusing to accept others. E.g. a
concatenation unit could still be able to use a small
compound for concatenation, not having capacities left for
concatenating a larger one.

 When an FU can not deliver further compounds, it
cannot proceed and thus ceases operation until it is
triggered again. Such triggers can come from new
compounds being delivered, timers expiring, but it may as
well happen that an FU in its connector set changes its
state to accept compounds again.
 The method used for informing other FUs that they
might succeed in sending a compound is wakeup. A set
of FUs that have to be notified when an FU is willing to
accept new compounds is called receptor set. The receptor
set of an FU “A” contains exactly those FUs that have FU
“A” in their connector set.
 Figure 4 shows an example of two FUs transmitting
compounds with respect to intra node flow control.
 Besides the rules above, there are some rules which
must be followed by every FU to conform to the flow
control protocol: Two consecutive calls to
isAccepting with the same compound and no
DATAreq calls in between have to yield the same result.
The following rules provide a way how to accomplish this
stability.
1. An FU may only base its decision whether to accept a

compound or not on its internal state, on the content
of the compound and on the outcome of
isAccepting calls to FUs in its connector set.

2. An FU may not mutate the compound during a call to
its isAccepting method.

3. An FU may not change state during a call to its
isAccepting method.

4. An FU may not mutate the compound between the
isAccepting call to an FU of its connector set and

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

the delivery of that unit to the questioned unit.
Since an FU may base its decision whether to accept a
compound on the content of the compound, it is illegal
for the questioner to mutate the compound, potentially
invalidating the promise of the questioned unit to
accept the compound.

5. If an FU delegates the isAccepting call to an FU
in its connector set, it has to deliver the compound to
exactly this FU.
This leads to arbitrary long chains of promises to
accept a compound.

Note that rule 4 has a very strong impact on the
implementation of FUs that have no internal capacity
since they may not mutate the compound. A weaker
version of rule 4 would allow the modification of the
compound given the knowledge that no FU in the chain of
promises bases its decision on the changes made to the
compound. But this condition is very difficult to
guarantee.
 It is important to note that the order in which an FU
awakens units in its receptor set significantly changes
behaviour of the propagation of compounds. Units being
called first, have a higher chance of being able to deliver
compounds. A fair strategy would wakeup units using a
round robin algorithm, starting with another unit every
time. For three units A, B, C in the receptor set, the
wakeup sequences would be: ABC, BCA, CAB, ABC, ...
If the units in the receptor set have clear priorities, a
single wakeup sequence with the units ordered by
descending priorities would suffice. The wakeup strategy
is part of the receptor aspect of each FU.

2.4.2 Inter Node Flow Control
 In the case of a bottleneck in higher layers (e.g.
streaming applications that accept data with a lower bit
rate than the physical layer provides), protocols usually
provide inter node flow control mechanisms between the
communicating nodes. In fact, this again is based on the
flow control of the outgoing flows, but this time between
FUs of the peer node. Protocol functions must exist that
inform the peer node producing the data to slow down,
which results in intra node flow control of the producing
node to limit the amount of data generated.

2.5 Five Aspects of a Functional Unit

To summarize the discussion above, we distinguish five
aspects of an FU:
1. Compound Handler

Implement the handling of compounds of an FU
including intra FUN flow control. The methods
provided are
• DATAind(Compound),
• DATAreq(Compound),

• wakeup() and
• isAccepting(Compound) Boolean.
Handling of compounds includes mutation, dropping,
injection and forwarding. Activation and initialization
of commands is considered as mutation.

2. Command Type Specifier
Define the type of command provided by the FU. This
type will be used to create an initial command pool
and to verify unit dependencies as will be discussed in
section 3.

3. Connector
Hold the set of FUs that compounds will be delivered
to in the outgoing direction.
Define a strategy to select the appropriate FU for a
given compound.

4. Receptor
Hold the set of FUs in which the FU itself is in the
connector set.
Define a strategy to wake up FUs.

5. Deliverer
Hold the set of FUs that compounds will be delivered
to in the incoming direction.
Define a strategy to select the appropriate FU for a
given compound.

3. UNIT DEPENDENCIES

 Ideally an FUN would consist of FUs without any
inter unit dependencies. But that is not an option for
building real world protocol stacks. Knowing what kinds
of unit dependencies exist, what they imply and when to
accept them is essential for the design of FUs and FUN.
 We distinguish between two different kinds of unit
dependencies: Direct and deferred coupling. Direct
coupling is a dependency on the interface of an FU;
deferred coupling is the dependency on the command of
another FU. When FU “A” depends on the interface or the
command of FU “B” we say that “B” is a friend of “A”.
Direct dependencies arise for example for
• multiplexing FUs that need assistance of their friends

below them to decide where to deliver compounds.
• horizontal collaboration; FUs responsible for

realising control plane functionality, receiving
supervisory frames from a peer node and configuring
their friends to modify the user data plane
accordingly.

• vertical collaboration; layered protocol functions that
must work close together but change behaviour in
different places of a protocol stack.

 To avoid tight coupling, those dependencies should
rely on the most general interface possible [6]. The goal
should be to make FUs depend on families of units
sharing a common interface, than to depend on a single

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

type of FU. This allows friends to be exchanged without
modifying the dependent FU.
 Since the exact layout of an FUN is unknown to the
FUs, the FUN provides services for the FUs to find their
friends by name and desired interface. Making the names
of the friends a configuration option to dependent FUs
results in a high degree of flexibility. Friends can be
retrieved once after re-configuration of the FUN.
 To retrieve a command from a command pool, the
retrieving FU does not need to rely directly on an
interface of the command’s provider. It relies on the
command’s provider to be present in the FUN and on the
type of command the provider specified.

Figure 6. FlowSeparator in a FUN.

 4. FLOW SEPARATION

FUs as described comprise state and behavior. An

SAR unit for example needs to store segments of
compounds to be able to apply segmentation and
reassembly. An FUN therefore needs different instances
of a SAR unit for different peer FUNs as depicted in
figure 5.

The way of creating FUs within an FUN dynamically
depending on the flow is by using a flow separator (see
figure 6). The flow separator itself is an FU, configured
by a key to distinguish flows and a strategy to create FU
instances [7]. Compound handling including flow control
is delegated to the according instance by the flow
separator.

5. CONCLUSIONS

A framework for building re-configurable protocol stacks
out of Functional Units is presented. Functional Units are
connected using a uniform interface to form arbitrary
Functional Unit Networks in order to build complex
protocols. An interface, divided into the following five
aspects, has been defined: Compound Handler, Command
Type Specifier, Connector, Receptor and Deliverer. It is
stated that Functional Units should ideally be independent
from other Functional Units. However, this is not always
possible. A solution for keeping dependencies at a
minimum level is presented. Finally, the problem of flow
separation is discussed briefly.

Furthermore, the presented framework opens up the
potential for accelerated protocol stack development and
performance evaluation.
Future work includes further investigations on the
identification and implementation of reusable Functional
Units conforming to the presented interface.

6. ACKNOWLEDGMENTS

The authors would like to thank Prof. Dr.-Ing. B. Walke
for the fruitful discussions and comments to the content of
this paper. The presented work has partly been funded by
the European Commission in the FP6 IST-Project
WINNER (IST-2003-507581).

 7. REFERENCES

 Figure 5. FUs of different flows.
[1] Berlemann, L., Pabst, R., Schinnenburg, M. and Walke, B.

H., “A Flexible Protocol Stack for Multi-Mode
Convergence in a Relay-base Wireless Network
Architecture”, in 16th IEEE Conference on Personal, Indoor
and Mobile Radio Communications, PIMRC 2005, Berlin
Germany, September 2005

[2] J. Mitola, “The Software Radio Architecture,” in IEEE
Communications Magazine, vol. 33, no. 5, May 1995, pp.
26-38

[3] Berlemann, L., Pabst, R., Walke, B. H., “Multimode
Communications Protocols Enabling Reconfigurable
Radios”, in EURASIP Journal on Wireless
Communications and Networking 2005:3, pp. 390-400

[4] R. Pabst et al., “Relay-Based Deployment Concepts for
Wireless and Mobile Broadband Radio,” in IEEE
Communications Magazine, vol. 42, no. 9, Sept. 2004, pp.
80-89.

[5] Berlemann, L. and Cassaigne, A. and Pabst, R. and Walke,
B. “Modular Link Layer Functions of a Generic Protocol
Stack for Future Wireless Networks,” SDRforum’04,
Phoenix USA, Nov. 2004

[6] Sutter, H. and Alexandrescu, A., “C++ Coding Standards”,
Addison-Wesley, 2005

[7] Gamma, E. et al, “Design Patterns”, Addison-Wesley, 1995

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

