

USING GENERIC COMPONENT ENVIRONMENTS IN JTRS RADIOS

Murat Bicer (Mercury Computer Systems Inc., Chelmsford, MA, mbicer@mc.com)

Jim Kulp (Mercury Computer Systems Inc., Chelmsford, MA, jkulp@mc.com)
Frank Pilhofer (Mercury Computer Systems Inc., Chelmsford, MA, fpilhofe@mc.com)

ABSTRACT

In the foreword of the Software Communications
Architecture Specification, JTRS JPO states that “the SCA
has been structured to build on evolving commercial
frameworks and architectures.”[1]. Building a specification
on commercial standards enables the vendors to implement
the required functionality using COTS products. Extended
use of COTS in a system significantly reduces the
acquisition, operation and supportability costs for the
government. Following this principle, the SCA deliberately
references commercial frameworks and standards such as
minimumCORBA[2], Interoperable Naming Service[3], Event
Service[4], Lightweight Log Service[5], POSIX[6], UML[7]
and XML[8]. As the SCA specification evolves, more
commercial standards can be adopted by the SCA. This
paper describes commercial standards that can be
candidates for adoption and investigates how existing
implementations would be affected by them.

1. RELATED OMG STANDARDS

The Object Management Group (OMG) is an open
membership, not-for-profit consortium that produces and
maintains computer industry specifications. The OMG
Software Based Communications Domain Task Force (SBC
DTF) is currently working on the “PIM and PSM for
SWRadio” specification in an effort to commercialize some
additional aspects of the SCA. The OMG minimumCORBA,
Lightweight Logging Service and Interoperable Naming
Service specifications are already referenced by the SCA.
 There is significant similarity between the SCA and the
OMG CORBA Component Model (CCM). CCM was
designed as a broadly applicable generic component
middleware standard. Both the SCA and CCM are based on
the idea of composing applications of interconnected
components. This is not surprising, as the SCA specification
was born out of the CCM specification before CCM was
adopted and finalized by the OMG. The SCA has additional
features and functionality to use resource management to
decide which devices are capable of hosting a component
implementation. The CCM has additional "enterprise
computing" features, and a richer and more detailed model of

component implementations. Unfortunately, due to some
timing issues and the fact that CCM was originally
completely inappropriate for embedded systems, the SCA
could not be based on CCM, but only on CORBA.
 The OMG “Deployment and Configuration of
Component-Based Applications” specification (D+C) was
created to enhance the deployment model of CCM, learn
from the SCA, and provide a new commercial standard for
component deployment. It embraces some of the SCA’s
deployment concepts, and introduces an updated
deployment model into the CCM domain.
 D+C defines 4 managers to control and manage the
domain. These are the Repository Manager, the Target
Manager, the Execution Manager and the Node Manager.
 The Repository Manager is a service that allows
installation, retrieval and deletion of component software
packages. A D+C component package is analogous to an
SCA Application. It consists of a set of component
implementation artifacts and XML meta-data that represent a
deployable application. The Repository Manager provides
central access to package meta-data and artifacts. When a
package is installed, the repository manager parses the meta-
data for this package from the XML files and puts the
information in IDL-defined data structures for retrieval. The
Repository Manager essentially implements the install and
uninstall functionality of the SCA Domain Manager.
 The Target Manager is a run-time service that centrally
maintains a domain’s platform meta-data. It provides
operations for retrieving the meta-data describing domain
resources reflecting either their total or remaining capacity.
Additional operations support the commitment and release
of these resources as well as run-time updates such has hot-
swapping.
 D+C applications are executed by the Execution
Manager based on a deployment plan. The Execution
Manager is a singleton run-time service for the execution of
deployment plans within a domain. It delegates operations to
the Node Managers on each node. In order to do this, the
Execution Manager decomposes the deployment plan into a
set of partial component assemblies of component instances
that execute entirely within a node. The Execution Manager
essentially implements the plumbing part of the create
functionality of the SCA Application Factory.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

 The Node Managers support the execution of a
localized deployment plan. While the Execution Manager is a
generic piece of the infrastructure, the Node Managers are
specific to their node types.
 A Node Manager service is not necessarily collocated
with the managed node. It could run on a different node as
long as it has the capability to launch component
implementations on the managed node. This allows
specialized hardware nodes such as FPGAs and DSPs to be
a part of the domain even if they do not host an operating
system or run concurrent processes.
 Like the SCA, D+C allows implementations to define
their requirements and targeted processor typesto define
their capabilities, and defines a matching algorithm between
the two. D+C has new concepts like hierarchical assemblies
and an algorithm for an assembly to select between
alternative component implementations. D+C also attempts
to work in a platform independent manner, by delegating
specifics about resources and capabilities to a platform-
specific model that is separate from the D+C model. The
resources and capabilities are essentially a contract between
the component developer and the runtime environment(s) on
the nodes. D+C is also designed for scalability, to support
distributed systems with many computers.
 An SCA personality module built on the D+C model can
support compliance with the current SCA specification.
 With this layered enhancement, a D+C enabled CCM
implementation that is compliant with the Lightweight CCM
profile becomes an attractive foundation for an SCA Core
Framework, greatly enlarging the specification’s COTS
content beyond CORBA and POSIX, and leveraging
adopted OMG standards to work in favor of the SCA and
waveform applications.

2. CURRENT STATUS

With the SCA specification’s current standing, it is possible
to use D+C internal to a Core Framework implementation. In
such an implementation, SCA interfaces and the domain
profile would be unchanged. The Core Framework would
internally translate SCA Software Packages to D+C
packages, and then delegate installation and deployment to
the D+C infrastructure. Using D+C in a CF implementation
would increase the COTS content of the end-product
significantly and focus the SDR aspects of the SCA model
as a personality of a COTS component deployment system.
 Such an implementation of the SCA 2.2 Core Framework
would make use of the Deployment and Configuration
facilities to deploy and configure waveform applications,
while not taking advantage of advanced features like
hierarchical assemblies. Such an implementation also
wouldn’t use the CORBA Component Model, as the change
of the CF::Resource interface to a CORBA component would
imply backwards-incompatibility (e.g. by using component

primitives to navigate ports rather than the PortSupplier
interface).
 A D+C-based SCA would expose the same CF
interfaces, and use the same XML descriptor files, as defined
by the SCA 2.2 specification. Usage of the D+C functionality
would be completely encapsulated inside the Core
Framework. The Core Framework would then delegate many
operations to the COTS D+C implementation and thus be a
smaller software module than a typical standalone Core
Framework.
 The subsections below enumerate the potential changes
in the components of a CF constructed this way.

2.1 CF::DomainManager

Application installation and device management would be
impacted by the presence of a D+C platform. The
installApplication operation would delegate to the
Repository Manager, and the registration of devices would
cause the Domain Manager to send domain updates to the
D+C Target Manager.
 When a CF client requests the installation of an
application, the Domain Manager would create a package in
the D+C package repository. To accomplish this , the Domain
Manager has to read the package’s descriptors, and to
translate the SCA Software Assembly Descriptor into a D+C
Component Package Description. The details of this
transformation can be seen in [9]. The Domain Manager then
creates the package in the D+C repository and instantiates
an Application Factory object encapsulating the resulting
package configuration. Note that, while the SCA descriptors
must be parsed from XML, the D+C repository has an IDL-
based binary interface so no D+C XML is ever produced.
 When a Device Manager registers a new device with the
Domain Manager, the Domain Manager would send a
domainUpdate to the D+C Target Manager reflecting the
change in configuration. For Executable Devices, the Domain
Manager also instantiates a wrapper that acts as a Node
Manager in order to take launch requests from a D+C
Execution Manager, translating these requests to operations
on the underlying Executable Device and Resource
interfaces.

2.2 CF::ApplicationFactory

The Application Factory is a CF component that represents
an installed application and that supports creating and
configuring an instance of that application. Clients of the
Application Factory can provide a subset of device
assignments.
 This represents the planning and launching phases
according to the D+C specification. In a D+C based CF, the
Application Factory would include a planner, or re-use and
extend a planner provided by the platform. A tradeoff could

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

be made regarding advance planning (i.e. at application
installation time) or late planning (at application instantiation
time).
 The Application Factory then passes the resulting
DeploymentPlan to the Execution Manager, launching the
application (using ExecutionManager::prepare,
ApplicationManager::startLaunch and
Application::finishLaunch).
 Because D+C is concerned with the deployment and
initial configuration of an application only, its resulting
Application object does not support run-time configuration
or port navigation. The Application Factory provides an
object that implements the CF::Application interface,
delegating configuration to the assembly controller and port
navigation to the respective resource.

2.3 CF::ExecutableDevice

The D+C Execution Manager uses the Node Manager
interface to launch components on nodes. As mentioned
above, the Core Framework needs to provide a Node
Manager for each Executable Device during startup. This
wrapper can be generic, i.e. it is not device specific. The
wrapper delegates preparePlan requests to appropriate load
and execute primitives on Executable Devices. Processing
nodes that are already part of the D+C platform need no
such wrapper. Only SCA-enabled executable devices
dynamically registered with the domain manager need such
wrappers. Note that the wrappers can be objects local to the
domain manager.

3. POSSIBLE EVOLUTION PATHS FOR SCA

Currently, there is an overlap between the SCA specification
and the D+C (with Lightweight CCM) specifications. The
previous chapter explained how this relationship can be
exploited when implementing a CF built on a COTS D+C
system.
 Moving forward, the JTRS JPO can choose between two
options to determine the path for the evolution of the SCA
specification. Figure 1 shows the relationship between the
SCA and the OMG specifications, as well as the options for
SCA evolution.
 The first option would be to continue making minor
modifications to the SCA and the relevant OMG
specifications through change proposals. This would bring
these specifications closer, thus increasing the COTS
content of the SCA CF implementations. The burden of
maintenance would stay the same as this approach does not
necessarily reduce the size of the SCA specification.
 More beneficial results could be achieved by the
second option: explicitly referencing the aforementioned
OMG specifications in the SCA (like the current SCA
references the LightWeight Logging service). This would

recognize that these additional aspects of the SCA do not
need to be specialized for SDR, just like CORBA does not
need to be specialized for SDR.

Figure 1 – SCA Evolution

 Even though such an adoption would have some impact
on the specification, large parts of the SCA will remain
unaffected. This includes most of the Base Application
Interfaces, the Framework Control Interfaces, the Framework
Services Interfaces, and usage of the logging and event
services. Also, the Application Environment Profile remains
unchanged.
 The adoption of D+C/LWCCM will affect the metadata
used by waveform applications and devices. The Software
Package, Software Component and Software Assembly
descriptors will be transformed into the Component Package
and Component Implementation descriptors in binary form
from the D+C specification. This allows waveform
applications to benefit from D+C features like hierarchical
assemblies. The SCA can extend the Target Manager to
accept domain updates from the Domain Manager during
device registration.
 The adoption of LW CCM will require a slight
modification to the CF::Resource interface. CORBA
Components already include some of the functionality
provided by the CF::Resource interface, such as ports,
navigation and configuration. In a CCM-based SCA,
Resources would be implemented as CCM components. This
could be achieved by changing the definition of
CF::Resource into a component, such as:

interface Startable {
 void start ();
 void stop ();
};

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

component Resource
 supports Startable, LifeCycle,
TestableObject {
 string identifier;
};

 The Resource Factory interface would be replaced by
CCM entry points.
 The CF would then use D+C’s primitives to configure
and interconnect components. At startup, CF would still
provide an Application object that would provide port
navigation and component configuration at runtime.
 An Application Factory interface would still be
provided as a part of the CF to handle dynamic deployment
planning. The Application Factory will act as a planner and
prepare D+C Deployment Plans at runtime that will then be
fed to the Execution Manager. Support for some additional
incremental and dynamic planning patterns could be
implemented in this SCA/SDR Application Factory, beyond
those typically used with D+C.

3.1 Migration of Existing Waveforms

If the SCA specification is modified as described above, the
existing waveforms would need to be migrated to this new
platform.
 An SCA waveform (i.e. Application) consists of two
parts: component implementations and metadata. The
metadata contains information to configure and interconnect
the application as well as component requirements that are
matched against device capabilities during deployment.
 The transformation of metadata, from SCA Software
Assembly Descriptors to D+C Component Package
Descriptors, is explained in detail in [9].
 For the migration of component implementations, there
are three options:
 The first option is modifying the component
implementations to implement the “new” CCM-ized Resource
component interface, and rebuilding the components. This
approach has the disadvantage of changing the source
code. This would be impossible if source code of the
waveform is not available.
 The second option is using a legacy wrapper that
provides the CCM-ized Resource component interface on
the outside, and delegates to the implementation via the old-
style Resource interface on the inside.
 A legacy wrapper could be easily generated from the
component metadata, as it would need knowledge of the
component ports and properties. From that, appropriate
wrapper IDL and implementation code could be generated
automatically. A Resource’s configurable properties would
be exposed as the component’s attributes, and local CCM
primitives for port interconnection (i.e. the connect operation

in the Receptacle interface) would be delegated to the
Resource’s getPort and the Port’s connectPort operation.
Note that there is no overhead involved in the actual
connection. The overhead for configuration and other
operations on the component interface (e.g. the
TestableObject::runTest operation) would be a single local
indirection, as the legacy wrapper would just forward the
invocation to the respective operation on the Resource
interface. As for footprint, the legacy wrapper does not
contain any complex operations but is only a straightforward
component implementation. An automated tool could thus
provide the full migration, first transforming the metadata as
detailed in [9], and then adding a legacy wrapper to each
implementation.
 Finally, the third option is running legacy component
implementations in a SCA-legacy-enabled Node Manager.
This approach is the least invasive and allows the execution
of SCA 2.2 components without change. Its disadvantage is
the need to write a specialized Node Manager. This also
reduces the COTS content of the system.

3.2 Impact on Existing SCA Devices

3.2.1 Devices Components are “Deployed On”

D+C uses the term “resource” to describe the available
features and assets in a target environment. During the
creation of the deployment plan, the implementation
requirements of the components and connections are
matched against the resources of the nodes and
interconnects to identify suitable nodes and interconnects
for deployment. This concept is similar to SCA’s capacity
concept for allocation type properties, where the
Application Factory determines the candidate devices.
 Executable Devices can be modeled as Node Managers
in the new D+C compliant environment. D+C allows
centralized management of node capacities through the
Target Manager, so that a Node Manager need not be
concerned with capacity allocations.
 Existing Executable Devices can be migrated to this new
environment by using wrappers. A generic wrapper could
easily act as a Node Manager on the outside, and delegate
calls to a legacy loadable or executable device. Such a Node
Manager could only be used to load and/or execute legacy
SCA components. In order to support new CCM compliant
SCA Resources, additional Node Manager behavior would
need to be implemented.

3.2.2 Devices “Used By” Components

D+C node managers are infrastructure elements that are not
application software components. In other words, D+C
nodes are potential targets only for execution, comparable to

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

SCA Executable Devices. Other types of devices that are
used by waveform components (such as an Audio Device)
can be modeled as node resources in D+C. An SCA
Resource that connects to a Device through a usesdevice
relationship can be modeled in the D+C environment by
defining an ImplementationRequirement on the component
implementation. The ImplementationRequirement would
have a ResourceUsageKind of InstanceUsesResource,
which specifies that the relationship is a “uses” relationship
between a component instance and a D+C resource. This
D+C feature allows such a resource to be represented by any
type of “handle”. When mapping the SCA uses device
relationship, this handle is a CORBA object reference. Just
like the SCA, the software component uses the required
device by using the CORBA object reference.
 In other words, D+C unifies the SCA capacity allocation
and used by devices concepts under the Implementation
Requirement concept.

4. CONCLUSION

An SCA CF built on a COTS D+C capable Lightweight CCM
platform would be fully-compliant with the SCA specification
while increasing the “COTS” content of the implementation.
By increasing COTS content, we mean using commercially
available implementations of generic component-based
software standards to implement the functionality required
by the SCA. Such an approach would reduce the operation
and supportability costs. The existing SCA compliant
waveforms would run on this platform without any change.
 In the future versions of the SCA specification, D+C
and Lightweight CCM can be explicitly referenced, to take
full advantage of these OMG specifications’ advanced
features such as hierarchical assemblies of components. The
SCA already references other commercial standards. This
approach would take this adoption one step further and
leverage more available commercial technologies that are
suitable for, but not specific to, SDR. As the size of the SCA
specification decreases by utilizing commercially available
standards, the cost of maintaining and supporting the
specification drops significantly.

5. REFERENCES

[1] Modular Software-programmable Radio Consortium, “Software
Communications Architecture Specification”, MSRC-5000SCA,
V2.2, November 17, 2001.
[2] Object Management Group, “minimumCORBA”, OMG
document orbos/98-05-13, May 19, 1998.
[3] Object Management Group, “Interoperable Naming Service
Specification”, OMG document formal/00-11-01.
[4] Object Management Group, “Event Service Specification”,
OMG document formal/01-03-01: Event Service, v1.1.
[5] Object Management Group, “Lightweight Log Service
Specification”, OMG document formal/03-11-03: v1.0.
[6] International Organization for Standardization, “POSIX.1.
Application Program Interface” ISO/IEC 9945:1996.
[7] Object Management Group, “Unified Modeling Language
Specification”, Version 1.3, March 2000.
[8] World Wide Web Consortium, “Extensible Markup Language
1.0.”, W3C Recommendation, Feb 1998.
[9] Mercury Computer Systems, Inc., “SCA to D+C XML
Transformation”, White Paper, March 2005.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

