
“The authors represent that the work is original and they are the author or authors of the work, except for material
quoted and referenced as text passages. Authors acknowledge that they are willing to transfer the copyright of the
abstract and the completed paper to the SDR Forum for purposes of publication in the SDR Forum Conference
Proceedings, on associated CD ROMS, on SDR Forum Web pages, and compilations and derivative works related
to this conference, should the paper be accepted for the conference. Authors are permitted to reproduce their work,
and to reuse material in whole or in part from their work; for derivative works, however, such authors may not grant
third party requests for reprints or republishing.”

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

ACHIEVING SCA COMPLIANCE FOR FPGA AND DSP COTS HARDWARE

Rodger H. Hosking
(Pentek, Inc.: One Park Way, Upper Saddle River,

New Jersey, 07458, USA, rodger@pentek.com)

ABSTRACT

Developers of JTRS (Joint Tactical Radio System) platforms
have been mandated to conform to SCA (Software
Communication Architecture) specifications and undergo
certification to ensure these requirements have been met.
 As a result, many JTRS radio set developers who require
FPGA or DSP devices to achieve the necessary performance
levels for complex waveforms and multi-channel operation,
have been faced with two choices: Either develop custom
hardware and build SCA compliance into it from the ground
up, or else buy COTS products and try to adapt the standard
drivers and libraries for SCA compliance. Both choices pose
tangible risk and cost factors.

By addressing the SCA compliance issue during the
product development phase as part of the hardware and
software engineering effort, COTS (commercial off-the-
shelf) vendors can provide SCA-compliant hardware
products fully supported with a core framework environment
and development tools. This helps reduce risks and costs for
the integration effort by JTRS radio developers.

This paper discusses the design considerations for FPGA
(field programmable gate array) COTS hardware products,
integration strategies of these products into core frameworks,
and aspects of development tools for tailoring these products
to the specific needs of a radio set.

A simple FPGA-based JTRS transceiver board example
is presented for reference.

1. INTRODUCTION

Two essential elements of hardware intended for software
defined radio systems targeted for SDR are flexibility and
programmability. Hardware products based on GPPs
(general purpose processors) not only meet these needs, but
many of them support operating systems that are POSIX-
compliant. As such, they are capable of operating within a
CORBA environment, thus fulfilling the requirements of
SCA.
 CORBA (common object request broker architecture)
assigns processing tasks to a pool of distributed processing
resources based on well-defined system management rules
and procedures. This effectively decouples the specific

signal processing algorithms from hardware structures of the
processing engines used to implement them.
 Nevertheless, wider signal bandwidths, more complex
waveforms (modulation and demodulation schemes), and
multi-channel operation are driving hardware designers
towards less SCA-friendly devices such as DSPs and
FPGAs. While these components can dramatically
outperform GPPs with their dedicated and highly-parallel
signal processing structures, those same characteristics will
not support the necessary POSIX-compliant operating
systems.
 Putting SCA wrappers around these devices in the form
of proxies abstracts the underlying hardware from the rest of
the SCA system, allowing FPGAs and DSPs to boost system
processing horsepower to be at least somewhat compliant
with the SCA environment.
 However, these wrappers require layers of software that
often compromise the effectiveness of the underlying
hardware engines. In fact, this potentially significant trade-
off in performance for portability is central to the quest for a
standardized method for hardware abstraction.
 Towards that end, in August 2004, the SCA Release 3.0
introduced the Specialized Hardware Supplement (SHS)
defining SCA connectivity to the HAL (hardware abstraction
layer) for DSPs and FPGAs. DSPs were required to
implement four operating system calls for control and data
transfer functions.
 FPGAs required two standardized ports, a sink port for
delivering data into the device and a source port for sending
data out from the device. In both cases, extensions to the
SCA infrastructure are needed to implement these interfaces.
 After more than a year, widespread adoption and
implementation of the SHS has failed to materialize and
additional work on the standard is clearly indicated. Again,
one of the major obstacles is trying to come up with a
suitably efficient interface between the hardware and SCA.
 In order to understand some of the issues surrounding the
mission, an FPGA-based COTS product designed for SCA
will be presented, followed by a description of how that
product is incorporated within a complete SCA development
environment.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

2. COTS SDR HARDWARE FOR SDR AND SCA

The various hardware elements of an SCA-compliant radio
are referred to as Devices, and can include GPPs, A/D and
D/A converters, receivers, FPGAs, DSPs, and other types of
equipment. From a software point of view, the software
proxies that act as interfaces to the hardware are also
referred to as devices, since all communication to the
underlying hardware must flow through these structures.
 Devices are divided into four different classes. Simple
elements like an A/D converter that requires basic control,
monitoring, and data connections are called Devices. A more
complex element, like a GPP capable of accepting and
executing program code, is called an ExecutableDevice.
 An FPGA is capable of performing a signal processing
function but cannot really execute program code. Instead, the
FPGA must first be configured for a particular task and so it
is called a LoadableDevice. The fourth class of device is a
combination of devices and so is termed an
AggregateDevice.

2.1. COTS Hardware Example

One example of a single hardware product capable of
meeting the definition of three classes of SCA devices is the
Pentek Model 7640 Dual Channel Software Radio
Transceiver. Shown in Figure 1, the 7640 includes two 105
MHz 14-bit A/D converters, two 500 MHz 16-bit D/A
Converters, and a 6-million gate Virtex-II Pro FPGA
containing two PowerPC processors.
 Other 7640 resources include 512 MB of SDRAM, a
four channel digital down-converter and a digital up-
converter, both ASICs. As a PCI card, the board plugs
directly into a PCI slot of a desktop PC. All communication
with the board is performed across the PCI bus to the rest of
the system.

 Each of the two A/D converter inputs can be connected
directly to an RF tuner, which amplifies the antenna signal
and down converts the signal frequency to IF
(intermediatefrequency), typically below 200 MHz. Each of
the two D/A converter outputs can drive the IF inputs of an
analog RF up converter and power amplifier suitable for
driving a transmit antenna.
 Based on the Device classes outlined above, the A/D
and D/A converters of the Model 7640 can be considered as
simple Devices and the FPGA as a LoadableDevice.
 One might think that the two PowerPC processor engines
within the FPGA could be candidates for Executable
Devices. However, it is unlikely that all of the required
operating system and CORBA structures are possible within
the constraints of this specialized hardware environment. In
fact, it is much more reasonable that the PowerPCs might be
used as Loadable Devices. In this case, a C program
compiled for the PowerPC could be loaded into associated
RAM and then executed upon command, analogous to the
configuration code loaded into an FPGA.

2.2. Roles of the FPGA

FPGAs are incorporated into many software radio hardware
products because they offer several key advantages. First, as
a replacement for “glue” logic, their flexible I/O pins can
mimic various logic levels to implement a wide range of
high-performance interfaces to components, buses, memory
devices and communication ports.
 In the hardware example shown, note that all of the
resources are connected directly to the FPGA. Not only does
the FPGA provide the necessary logic interfaces, it also
provides flexible and reconfigurable interconnections
between the resources.
 In addition, the FPGA includes specialized hardware
structures including SDRAM controllers for the three

24GC4016
QUAD

DIGITAL
DOWN

CONVERTER

A
B
C
D

PCI Bus

XILINX
VIRTEX-II Pro

FPGA

XC2VP50

Dual
IBM 405

PowerPCs

PCI 2.2
INTERFACE

64 bits/ 66 MHz

64 64

BYPASSABLE
320 MHz
DIGITAL

UP
CONVERTER

16 MB
FLASH

32

256 MB
SDRAM

128 MB
SDRAM

128 MB
SDRAM

DUAL
TIMING

BUS
GEN

CH A
IN

CLK A

CLOCK
& SYNC

BUS

105 MHz
14bit A/D

105 MHz
14bit A/D

CH B
IN

CLK B

CH A
OUT

CH B
OUT

Model
7640500 MHz

16bit D/A

32

32

32

32

14

14

14

500 MHz
16bit D/A

14

Figure 1. Software Radio Transceiver PCI Board for SCA Development and Deployed Systems
Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

memory banks. These are commercial IP (intellectual
property) cores installed in the FPGA as part of the product
infrastructure. An advanced dual clocking, timing, and
synchronization system built from FPGA logic simplifies
data acquisition, time stamping, and supports multi-channel
operation.
 All of these features are supported with general purpose
libraries and drivers so that application programs can setup
operational parameters, data flow paths, triggering and
timing modes, and data formatting. Up to this point,
however, the product could have been implemented with
dedicated logic, and still provide all of the same functions.
So, in its first role, the FPGA simply makes the hardware
design more efficient.
 The second role of the FPGA is to provide custom signal
processing resources afforded by the wealth of DSP
structures including flexible block RAM, hardware
multipliers and logic slices. Customers can add their own IP
or install commercial off-the-shelf IP cores for specialized
tasks, often saving months of development time and
offloading signal processing chores from other processors in
the system. In this role, the newly-acquired function of the
FPGA is still often fixed during deployed operation.
 In a third role, however, the FPGA is reconfigured
during system initialization or during runtime based on the
current needs of the application. Here, we are approaching a
feasible facility for SDR.
 The fourth role involves exploitation of the on-chip
PowerPC processors, that can be equipped with an operating
system, and programmed to execute C code. Since they are
surrounded by a wealth of device interfaces, memory and
real-time signal processing hardware, the PowerPC cores
may not be allocated as freely as a generic processor within a
pool of GPPs, but those immediate resources may offer an
extremely efficient data flow pattern for real-time signal
processing tasks.
 It is important to realize that a single FPGA is capable
of assuming all four of these roles at the same time, but the
last two roles are of greatest interest for SDR and SCA.

3. SCA SOFTWARE ENVIRONMENT

How can the example COTS software radio board described
above be incorporated within an SCA-compliant environment
suitable for development and deployment for JTRS?
 Additional objectives for this environment are that it
must be low cost, employ industry standard hardware and
software components, and be scalable for a wide range of
applications. It must include provisions for developing
different radios, building new waveforms, creating new
applications, and controlling and monitoring radio facilities
through a GUI (graphical user interface).

 In addressing this mission, the strategy was to approach
the problem in a stepwise fashion. The first step was to start
with an existing SCA-compliant development platform based
on a desktop PC with all of the SCA software structures in
place. The platform must also include a reference waveform,
a simple I/O device, and a simple application. After a careful
survey of several different approaches, the SCARI++
Software Suite from CRC (Communications Research
Centre) of Canada was chosen.

3.1. SCARI++ Software Suite Overview

SCARI++ is a full-featured C++ implementation of the SCA
Core Framework version 2.2. As a flexible core framework
implementation, it is completely configurable, with special
emphasis on ease of use. It included several unique features
helpful for radio introspection and application debugging.
 SCARI++ offers a Component Development Library
(CDL) which is used to create application and device
components. The CDL implements complex SCA
requirements allowing the user to concentrate on the
development of applications or devices. For example, the
CDL offers a Multithread Safe framework for
query/configure services as well as for the device capacity
model. The CDL effectively reduces the quantity of code that
developers must write and helps meet the SCA requirements.
 Completing the SCARI++ Suite is the SDR
Development Toolset. Fully integrated with the CDL, it
provides the developer with a comprehensive set of tools to
design, run, debug and deploy SDR systems.

3.2. SCARI Component Development Library

The CDL has been designed to provide an effective method
of rapid application/device creation for SCA developers. The
CDL implements several common functionalities that must be
part of every SCA component.
 CDL automatically handles the SCA PropertySet
interface through a generic implementation of the Resource
interface. The CDL handles the complex validations that
must be performed (required by the SCA) when a Resource
or Device is configured or queried. The CDL handles the
mandated capacity model (and other state behaviors) through
a generic implementation of a Device.
 Using the CDL, developers can specialize generic
properties. The CDL supports the required two kinds of
properties (configure and allocation) as well as every
property format (simple, simplesequence, struct, and
structsequence).

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

3.3. SCARI SDR Development Toolset

As part of the SCARI Software Suite, CRC has developed a
number of software tools to assist in the development of SDR
projects. These tools are closely integrated with the
SCARI++ core framework implementations to provide an
even better interaction. The Toolset includes five tools to
enable application creation through each stage of
development.
 Component Editor helps create all metadata files for
any kind of SCA component. This GUI is form-based, simple
to use, and prevents the creation of invalid metadata. The
component editor completely abstracts the XML complexity
of the domain profile.
 Code Generator is a plug-in to the component editor
GUI, used to generate most of the SCA IDL Implementation
Code normally created manually. This plug-in is used to
generate C++ code for Resources and Devices.
 Waveform Application Builder (WAB) is a GUI used
to construct or modify waveform applications. Using the
WAB, applications are created by dragging components from
a toolbar onto an application canvas.
 Node Boot Builder (NBB) similar to the WAB in look-
and-feel, the NBB is used to define a hardware platform
configuration in terms of SCA devices and ports. The NBB
automatically generates the XML descriptor file to make the
platform SCA compliant.
 Radio Manager is used to control and configure a SCA
radio. This GUI offers a graphical block diagram view of the
radio nodes and applications. It displays a hierarchical view
of the radio node components.

3.4. SCARII Audio Device and Example Application

The Radio Manager controls the four basic components of an
SCA radio: the DomainManager, DeviceManager,
ApplicationFactory and Application. The DomainManager
registers all of the components in the radio, creates
interconnections between them, installs and controls
applications and offers introspection and user interface
facilities to the radio.
 The DeviceManager handles all control and activity of a
single Radio Node, which represents the group of devices
that together form the operation parts of the radio.
 In the example application provided with the system, the
Radio Node consists of the Pentium processor as the
ExecutableDevice, an audio Device implemented using the
system audio sound port, and a Log Port for monitoring and
debugging.
 The Application used in the example is the AudioEffect
application which accepts audio from the input sound port,
adds a controllable echo, and then delivers the output to the
output audio port.

4. PORTING COTS HARDWARE TO SCA

SCARI met all of the requirements of the first step in the
mission to port the Model 7640 into an SCI environment.
Using the SCARI development tools, the second step was to
substitute the audio input and audio output ports on the PC
motherboard with the A/D and D/A converter ports of the
7640.
 The SCARI Component Editor was used to create a new
SCA Device for the 7640. All of the parameters for
controlling the board were imported from the standard C-
callable library and drivers supplied with the COTS product.
Memory maps for all of the registers and memory resources
and low-level routines for manipulating control and status
bits were also imported. Templates were defined for testing
valid bit combinations and parameter values to prevent entry
of out-of-range settings.
 Once all items had been entered using the graphical user
interface, the Component Editor was generated Component
Descriptor XML files for the 7640 Device, fully consistent
with SCA requirements. These files include the SPD
(Software Package Descriptor), SCD (Software Component
Descriptor), PRF (Device Property File), and SPD.PRF
(SPD Property File).
 The Node Boot Builder was used to build a new radio
node consisting of the 7640 Device, the ExecutableDevice
(the Pentium processor) and Log Services. It creates the
DCD (Node Assembly Descriptor) file, which describes all
components within the node.
 Once the node is created, the DCD allows all aspects of
the radio node to be started and controlled by the
DeviceManager.
 At this point, the node is now ready for deployment by
the DomainManager which, under control of the
RadioManager, launches and runs the DeviceManager, the
ApplicationFactory and the Application.

4.1. SCA Compliant Development Platform

The 7640 hardware product by itself cannot be considered an
SCA-compliant offering, However, by bundling this product
with all of the necessary SCA infrastructure the resulting
system can be claimed to be SCA-compliant.
 Such a system is the Pentek SCA 2510 SCA
development platform. Comprised of hardware and software
components compatible with the Software Communications
Architecture (SCA) standard, the SCA 2510 is a PC-based
system running under Linux. It includes an installed (CRC)
SCARI++ SCA Core Framework, Component Development
Library and SDR Development Tools, plus the Pentek SCA
Board Support Package for the Model 7640 for all of the
board-specific components.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

 This complete platform offers a low cost solution
suitable for waveform developers, application developers and
system integrators. In order to support scalability to larger
platforms, additional 7640s can be installed in the PC. In
addition, the identical architecture is available in the 7140
PMC module, and the 7240 (6U) and 7340 (3U)
CompactPCI modules, all extremely appropriate for large,
deployed multi-channel military and commercial systems.

5. NEXT STEPS

Currently underway is the development of a representative
waveform component for FM modulation and demodulation.
Since the system audio device is still an available component
for a radio node as the example provided with the SCARI
package, the receiver can deliver demodulated data to the
audio output port.
 A suitable analog RF front end targeted for the
commercial FM broadcast band of 88 to 108 MHz, for
example, could be used to drive analog input of the 7640

A/D converter. The 105 MHz A/D converter is easily
capable of digitizing this entire 20 MHz bandwidth. Digital
down conversion using the ASIC DDC or one implemented
within the FPGA tunes and filters the signals of interest,
delivering base band signals for demodulation.
 Likewise, the SCARI audio input port could be used as
the input to an FM modulator component, followed by ASIC
or FPGA digital up conversion to the FM broadcast band and
then D/A conversion. The relatively low power at the analog
D/A output connector of the 7640 could drive an antenna
directly for reception by a nearby FM broadcast radio.
 Once the next revision of the SCA 3.1 Special Hardware
Supplement is released, it will be used to construct a
LoadableDevice using the FPGA of the 7640.
 Future roadmap efforts planned for this product are
LoadableDevice employing one or both of the PowerPC
processor cores inside the FPGA. Once these efforts have
been completed, the components will be incorporated as part
of the SCA 2510 platform.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

