

DYNAMIC POLICY ENFORCEMENT FOR SOFTWARE DEFINED RADIO

Patrick Flanigan, (Security Engineer, NCSA, University of Illinois Urbana-Champaign,

flans@ncsa.uiuc.edu), Von Welch, (Senior Security Engineer, NCSA, University of
Illinois Urbana-Champaign, vwelch@ncsa.uiuc.edu) Meenal Pant, (Software Engineer,

NCSA, University of Illinois Urbana-Champaign, mpant@ncsa.uiuc.edu)

ABSTRACT

Our research analyzes security policy enforcement issues
inherent to handheld Software Defined Radio (SDR)
devices. We have developed an abstraction for Dynamic
Policy Enforcement (DPE) for a SDR system which
consists of three distinct modules that monitor changes in
external conditions, validate system configuration based
on those conditions and a given policy, and implement
changes to ensure policy compliance. In order to
demonstrate the viability of our system, we created a
prototype that implements the roles and responsibilities of
our abstraction in conjunction with a prototype SDR
system previously developed by NCSA that is based on
the GNU SDR software.

1. INTRODUCTION AND MOTIVATION

Typically, standard radio devices have been built for
extremely specific functions, limited by the use of narrow
bandwidths and rigid hardware specifications. Software
Defined Radio (SDR) allows for functionality previously
statically-cast in hardware to be implemented in software.
The power of SDR lies in the ability to dynamically
reconfigure its functionality by changing flexible
software. With this flexibility, we achieve tremendous
advantages over hardware-only platforms because
software can be developed to perform the complex tasks
and dynamically updated, altered or even removed based
on changing conditions, users or policy. However, with
these gains in flexibility, security policy enforcement
becomes a major concern. Our work is focused on the
design and implementation of a Dynamic Policy
Enforcement (DPE) for SDR security.
 There are a number of distinct security issues with
SDR. The focus of each issue is dependent upon a
balance between the required flexibility and the level of
security that is desired. There has been a fair amount of
prior work focused on allowing for secure dynamic
download and installation of software into a SDR and the
protection of the base SDR software from malicious code.
Our focus is at a higher level of abstraction – the
implementation of secure and dynamic policy

enforcement for SDR to ensure that the functional pieces
of software deployed adhere to policy dependant on the
user of the SDR and the conditions in which the SDR is
being used.
 SDR policy enforcement must take into account
dynamically changing users, conditions, environments
and needs. In order to decide if a given configuration, by
which we mean combination of software in use and
parameters such as broadcast frequency, protocol and
power, there are a number of factors that effect how the
SDR should behave:

• Who is holding the SDR? What is the role of the

holder of an SDR device? Is it, for example, an
average citizen, a responder, a member of law
enforcement, or the commander of the response?

• What are the environmental conditions? Is it a
normal day or is there a condition alert or is there an
emergency response going on in the immediate area?

• What policies are in effect? Policies would seem to
be more static than the previous factors, but may vary
in time or as the device moves from one region to
another, changing administrative jurisdiction.

It is key to notice that, in particular with the first two

criteria, these may change dynamically and outside the
control of the SDR device. This requires policy
enforcement to not only consider requested changes (e.g.
in broadcast parameters or software installation), but
factors that change outside the device’s control (e.g. who
is holding the device or the state of emergency).
 Consider the scenario of first responders from an
emergency agency (e.g. fire, medical, law enforcement)
using SDR-based handheld radios during a response.
When the emergency is declared, the first effect might be
that average citizens holding SDR-based cell phones or
two-way radios would be severely limited in how they
could use those devices in order to preserve bandwidth
for responders. The responder’s devices however, should
remain fully functional, or even increase in functionality,
allowing them to access normally private channels to
facilitate cross-agency communication or to allow for (or
even require) encrypted private communication.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

mailto:flans@ncsa.uiuc.edu
mailto:vwelch@ncsa.uiuc.edu
mailto:vwelch@ncsa.uiuc.edu

 And, if under some unusual circumstance, a
responder were to use a device belonging to an ordinary
citizen, that device should readjust, granting as much
access to that responder as permitted by its policy and its
implementation.
 In this scenario, it is clear that we have many
possibilities for authorization and configuration. There
could be any number of users with different levels of
access, and these users could change at any time as the
radio is passed from person-to-person. A change in the
alert condition may require a change in basic
functionality, for example, reducing functionality to
preserve spectrum space for critical services. Different
modules for encryption may need to be changed on the fly
for higher security. And software modules themselves
may have specific policy restrictions as well. The
intersection of all of these factors can become quite
complex. Because of this, a dynamic and reliable policy
enforcement solution is required. By creating an abstract
security layer that interacts with the SDR application
layer, we can isolate and manage these security and
configuration needs. This needs to be accomplished at a
layer that is independent of the SDR so that we do not
compromise the implementation of the radio device.
 Our goal was to design and implement an
enforcement system that is capable not only of vetting
changes prior to their occurrence, e.g. a user requesting a
change in frequency or the application of an encryption
scheme, but after their occurrence as well, e.g. the radio is
dropped and picked up by a different user. This requires
not only traditional policy-based authorization gateways
that vet requests, but active system monitoring which
validates all elements of the system (user, software state,
external environment, etc.) against policy and is capable
of making changes to ensure policy is enforced in the face
of changes outside the control of the system. First, in
Section 2, we present our architecture and design of a
Dynamic Policy Enforcement for SDR. In Section 3 we
describe our implemented prototype to validate our
design. In Section 4, we cover the NCSA implementation
of SDR. We conclude with a discussion of related work.

2. POLICY ENFORCEMENT ARCHITECTURE

Our Dynamic Policy Enforcement (DPE) system is
focused upon preventing intentional or unintentional
behavior on the part of the SDR user, which violates
policy in regards to the methods of use of the SDR
system. We contend that an independent management
system composed of three abstract roles can successfully
accomplish this. We call these roles the monitor, the
implementor and the validator. These roles are
implemented as separate modules that intercommunicate.
 The monitor is the entry point to the entire system. It
detects and handles all changes to or requests for

changing the current configuration. This can be done
passively by capturing events, either through software or
hardware, such as a sensor, or by actively monitoring the
activity within the application layer. The monitor passes
all events to the implementor.
 The role of the implementor is to enact changes to the
SDR system, either by servicing requests that are deemed
to be valid under the current policy, or in reaction to
changes in external environment that have caused the
current system configuration to become invalid based on
current policy. The implementor communicates with the
validator to determine what configurations are
permissible under current policy.
 The validator contains policy which describes all
permissible configurations of the SDR system based on
environmental conditions and user attributes. It receives
queries from the implementor and responds with the
resultant configuration that should be implemented. This
configuration may be one requested or may be modified if
the a requested configuration is not permissible.
 Dynamic configurations can be represented by
permutations of the application’s components. Some of
these components are external because they exist outside
the software. A specific person, role or group denotes the
current user. The weather is denoted by some well-
defined, finite set of possible weather states. The
condition is something that is enforced externally to our
system entirely, such as an alert status. As a first level of
abstraction, we can consider these factors much like the
modules of the SDR stack. Let us call the entire set of
components and their dependencies our application layer.
And it is crucial that this layer is closed. That is, all
possibilities are accounted for at any given time. And
each of the components is verifiable, so that we are
always sure that the component is what it says it is. These
components and their configurations can be mapped-out
by sets of permutations. We can represent such images of
the application layer in a standard, ubiquitous format such
as XML. The monitor, implementor and validator can use
these images to communicate about configuration
decisions. And due to the abstraction of these security
policy issues, we are able to concentrate and isolate
authorization and module replacement apart from the
application itself.

3. POLICY ENFORCEMENT SYSTEM

We now turn to the detailed design of our system. Our
work is composed of two distinct systems – the Dynamic
Policy Enforcement (DPE) modules and the SDR
modules. How these two systems interact is the focus of
our research. This section provides an overview of the
DPE implementation, while the next is about the NCSA
implementation of SDR. Our intention was to build a
prototype of the two systems coexisting on a handheld

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

SDR. For our purposes, it has been sufficient to build
them both on a Linux box (Fedora 4) using GnuRadio
2.5. First we will look at the individual components, their
roles and how they intercommunicate.
 Instead of using sensor mechanisms to provide
external requests, we created a web-based interface that
allows a user to select a controlled set of parameters. This
GUI was built with Python and consists of three
dropdown menus that allow the user to select an
‘external’ request. We decided to use the role of the user,
the current alert condition and the weather as typical
parameters for this study. Many more variables could
have been used, some perhaps more relevant for specific
reasons, but our intention was to keep it simple. We
wanted to demonstrate functionality – not complexity. We
use specific permutations of these parameters as criteria
for the security policy decisions. When changes are
selected, they are reflected by rendered diagrams showing
the resultant configurations of the SDR. We will also
follow a typical flow of a request as it is processed by the
DPE system.

3.1 Individual Roles and Responsibilities

In Section 2, we discussed a viable abstraction for a
dynamic policy enforcement system which could manage
and make security policy decisions for SDR. We built
modules which implement this abstraction. The module
names were shortened for brevity. The names are montor
(monitor), imptor (implementor) and valtor (validator).
They are C++ modules that use named pipes to
communicate with each other using a messaging API
developed specifically for this project.
 Montor is the entry point and the event sink for the
DPE system for external requests and events fired off by
the SDR. Its job is to handle requests for configuration
changes and to monitor the SDR so that configuration
changes can be made in case there is some failure in the
current SDR setup. The motivation behind the event
monitoring is so that the SDR can be watched to ensure
stability and security. We foresee that threats upon a
system can be detected as internal configuration changes
or requests and they can be inspected as such. This
‘monitoring’ capability is not within the current
implementation of montor, but it is certainly an area that
invites further research.
 In the Linux workstation version of this system, the
GUI provides external requests to montor. The GUI also
allows the user to start and stop the DPE system and the
SDR. Each is started as a whole using multiple forked
processes. This was implemented for demonstrative
purposes. In an actual handheld SDR, these requests
could be enabled with sensors designed to detect changes
that should be handled by DPE. An example is the use of

biometrics to determine a user change that may require a
change to the SDR configuration.
 Imptor is the workhorse for the DPE system. It
handles requests that have been picked up by montor,
then gets them validated by communicating with valtor,
then actually makes the actual SDR configuration changes
as needed. It is aware of configuration needs through the
use of specific XML-based configuration files. These files
contain resource information used to set up the
configuration such as module names as well as
repositories for module downloads. They are also capable
of ensuring that the correct/secure modules are being used
for a specific configuration.
 The final piece of the Dynamic Policy Enforcement
system is valtor. Valtor assumes the role of the validator.
It receives requests from imptor, opens and inspects the
XML-based policy file, then processes the request with a
configuration that is appropriate for the given parameters
and sends it back to imptor. The security policy file can
be updated ‘on the fly’ as well. The current policy that is
being used is based upon eXtensible Access Control
Markup Language (XACML). We will discuss this
further in our Related Works section. We wanted to rely
upon a standardized way of representing our security
policy that could be applied to SDR.

Figure 1: An Overview the Entire System

3.2 The Request Data Flow

The primary vision that guided the development of this
system is that each module has its own unique role and
responsibility. They do not need to know anything about
what the other modules are doing. They watch their

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

message pipes and react, process and reply. In fact, one
can shut a module down and the entire DPE system will
stop. But if the module is then restarted, the system starts
moving again. The entire process is driven by the
messaging that is passed through the named pipes. Each
module processes its message by reading a pipe, and then
completes its role by writing out to another pipe. Figure 2
is a diagram of the flow of a request through the DPE
system. The message API between the modules is quite
simple. The data is written and read via pipes using a
message buffer layer which is mapped into structures
which pass the appropriate parameters.
 Let’s take a quick walk through the diagram. Montor
is waiting for something to happen. It receives a
configuration change request. In our case, this is very
simple because we only have two configurations that are
possible. We are only swapping out
encryption/decryption modules which reflect the security
level given the current parameters – the user, the alert
condition and the weather. Montor takes this state
information and relays it to imptor. Imptor checks the
appropriate configuration file and verifies that it is a valid
configuration. If not, imptor replies to montor that it was
an invalid configuration request. Nothing is changed.
However, if successful, the request gets passed to valtor.

Figure 2: The Request Flow

 Valtor receives the request and opens the XML-based
security policy file. It checks the permutation of the
requested parameters and determines if it is valid for the
requested configuration. Valid or invalid, valtor sends a

resultant configuration back to imptor. If valid, the
requested change is returned. If the policy criteria is
invalid, the ‘best alternative’ configuration is returned.
This ensures that even if the security level is not what is
required for the request, an appropriate configuration is
returned. Thus, the SDR always remains operational. The
policy file must be built so that any request will return a
valid configuration. It certainly can be flagged as a failed
request, but continuous operation without user
intervention is a positive alternative to SDR shutdown.
 Consider this scenario: the handheld SDR is being
used by someone who has a high security clearance. His
credentials match the current encryption scheme that is
implemented by the SDR configuration. He loses the
radio and it is found by someone who has inadequate
credentials for the configuration. Montor picked up the
change of user, but it has no knowledge of the current
configuration. By the time the request gets to valtor, the
configuration is passed as the current one, which fails for
the new user. A less secure configuration is passed back
to imptor and the change is made. The user does not even
need to know about the change. It can all be mapped out
in the security policy file. This ensures that all final
decisions about accessibility are made according to the
policy file.

4. NCSA SDR IMPLEMENTATION

In order to demonstrate the viability of our Dynamic
Policy Enforcement upon SDR, we have implemented it
in conjunction with a SDR system. For our
implementation, we are using GnuRadio 2.5 as the
underlying software required for implementing a SDR. In
order to demonstrate a typical SDR application, we
previously developed a reconfigurable software radio
‘data stack’ that consists of four executables that are
inter-connected via UNIX pipes. [3] The data stack is
essentially a collection of modules/layers such as source,
sink, software defined radio (SDR), encryptor and
decryptor that inter-communicate through a well-defined
API. (see Figure 3).
 The purpose of this module setup is to provide a data
stack that is dynamically reconfigurable. That is, any
layer can be replaced at runtime. We can replace modules
for security needs such as encryption or replacing
modules dependent upon functional needs that vary
according to the weather, conditions or the user. And
when these modules are swapped, allowable
configurations and proper authorization will need to be
considered. This requires a standard way of representing
all possible configurations of the modules and any other
determining factors. We refer to all modules and factors
as ‘components’ of the application layer. These
components comprise the SDR.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

 The impetus behind building such a system is to keep
the design fairly simple and well-bounded. Encryption
and decryption are somewhat ubiquitous and easy to swap
and analyze for a given system. Modifying the SDR
behavior in other ways such as bandwidth usage or output
power is much more complicated and raises even more
security considerations such has regional regulations and
standards. Thus, the SDR model for our purposes is
intentionally simple and straightforward. We needed a
simple model so that we could focus on dynamic policy
enforcement without sidestepping into other security
issues. If the SDR is built with modules, then our system
can be used with it. The layout of the SDR can be
specified in the configuration file.
 As the name suggests, Source is a data provider, such
as a file source or an audio source. Data from a
transmitter’s Source goes to the intended receiver’s Sink,
such as a file sink, audio sink etc. The Encryptor module,
located at the transmitter, is responsible for data
encryption before the data travels through the air
interface. This module is implemented as a software
object providing a specific encryption scheme, such as
Triple DES, AES etc. The Decryptor module, located at
the receiver, will decrypt the data before sending it down
to the sink. Similar to the Encryptor, this module is also
implemented as a software object providing a specific
decryption scheme. The SDR module provides a
transmit/receive path, filtering and modulation schemes
for the data to travel through the air interface.

Figure 3: The reconfigurable data stack

4.1. Previous NCSA work with SDR

The reconfigurable data stack was first implemented at
NCSA using GnuRadio 0.9 [2], C++ and UNIX pipes.

This stack is comprised of Application, Session, Security,
Radio Manager and Radio Hardware layers. It is
reconfigurable at runtime as well. The modules
communicate using named pipes. For a detailed
description of the architecture and implementation of this
stack please refer to [3].

4.2. Current Implementation

For the current implementation, GnuRadio 2.5, Python
2.3.4 [4] and UNIX sockets [5] are used. Our previous
work could not be reused, as the GnuRadio 2.5 code base
went through a major implementation change from
GnuRadio 0.9. Each of the modules are Python objects.
The SDR module is an extension of the GnuRadio 2.5
code. The modulation scheme used by transmit and
receive paths is Frequency Shift Keying (FSK). The SDR
module receives encrypted data from the Encryptor. This
data is then filtered, interpolated and modulated. The
signal is then transmitted over the air interface. At the
receiver the signal is filtered and demodulated to extract
the original data. The modules talk to each other via
UNIX sockets. During runtime any of these modules can
be swapped out with another similar module seamlessly,
based on the command received from the Policy
Enforcement front end.

5. RELATED WORK

In this section we briefly review and contrast some related
work in the field of SDR security.
 The Next Generation (XG) program [6] is developing
specifications and concepts related towards using SDR
technology for a dynamic redistributable spectrum. Their
proposed architecture [7] bears strong similarity to GNU
Software Radio-based data stack design, which is not
surprising since it also seems to be inspired by the ISO
network stack model. The XG group also has a proposed
policy language [8] (for which they have a prototype [9])
with implied policy enforcement architecture. This
architecture is fairly similar to ours, with a “Policy
Conformance Reasoner” corresponding to our validator,
an “Accredited Kernel” playing the role of implementor,
and the notion of a “Sensor” which partly fills our
monitor role. The major differences between the projects
are that the XG has spent considerable effort in
developing what appears to be a comprehensive policy
language and our project has incorporated external
environmental conditions besides radio spectrum use, e.g.
alert level and device user.
 Lam et. al. [10] propose a “Radio Security Module”
for validation and lifecycle management of software on a
SDR. This work is complementary to the work described
in our paper as it serves to validate downloaded software,

 Source

 Encryptor

SDR

Decryptor

 Sink

NewDecryptor

NewEncryptor

Swap at
runtime

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

while our work strives to manage that software’s use
under different conditions once it is installed on the SDR.
 Hill et. al. [1] have performed a threat analysis on the
GNU Software Radio [2] which forms the basis of our
prototype implementation. Their work focused on a
number of software vulnerabilities within the GNU
implementation. These problems include memory access
threats and the risks associated with the manipulation of
the execution graph. This analysis pointed out some
execution weaknesses of the GNU implementation which
effect our implementation as well, namely the single
address space in which the different software modules
run, which in our implementation includes the policy
enforcement modules as well. Advancement of our work
beyond the prototype phase would need to address this
concern. Their work also stressed the need for a strong
policy driven configuration that would provide a
framework to minimize the risks associated with the
programmability of RF parameters. It is crucial that
operating constraints be in place so that security policies
can be effectively enforced.

6. CONCLUSION

We have presented a possible architecture for dynamic
policy enforcement for a SDR system which takes into
account dynamic attributes external to the SDR device
such as the device user and environmental conditions
such as level of alert. Our architecture consists of three
main components, which serve to monitor the current
system configuration and accept requests for changes to
that configuration, validate configuration changes, either
requested or externally driven, and then implement
changes based on requests or deviation of the
configuration from what is valid under policy. To
demonstrate the validity of our system, we have
prototyped our architecture in conjunction with a GNU
Software Radio-based application data stacked previously
implemented at NCSA.
 We examined at length the problems and constraints
that were encountered in this development. As an
extension to our findings, we also considered the
viewpoint that attacks upon an application\system and
internal failure could be seen as changes in behavior that
can be detected by the monitor. These could certainly be
interpreted as requests for new configurations that could
be handled just as safely and easily as we have shown
above. Transitioning our focus into software and away
from hardware dependency has brought along many
inherent security issues. This is seen very clearly with
SDR. Our research has been focused upon abstracting
these issues out of the application layer and addressing
them independently. We have found that secure software

systems can be represented in a model that is highly
adaptive and configurable. Our prototype provides us
with a strong, dynamic security policy enforcement
solution for SDR.

7. ACKNOWLEDGEMENTS

This work is funded by the Office of Naval Research
through the National Center for Advanced Secure
Systems (NCASSR), as was the previous work
developing the GNU SDR Radio-based data stack
described in [3]. The GNU SDR Radio software base
provided the foundation for our project.

8. REFERENCES

[1] R. Hill, S. Myagmar, R. Campbell, Threat Analysis
of GNU Software Radio, World Wireless Congress
(WWC) , May 2005.

[2] http://www.gnu.org/software/gnuradio/
[3] A. Betts, M. Hall, V. Kindratenko, M. Pant, D.

Pointer, V. Welch, and P. Zawada, The GNU
Software Radio Transceiver Platform, Procs of
2004 Software Defined Radio Technical Conference
(SDR Forum), Phoenix (AZ), Nov 2004, Vol. C, pp.
41-46.

[4] http://www.python.org/
[5] W.R.Stevens, “Unix Network Programming, Volume

1: Networking APIs - Sockets and XTI”, 1997,
Prentice Hall PTR

[6] “XG Overview”, visited September 29th, 2005,
 http://www.darpa.mil/ato/programs/xg/overview.html
[7] XG Working Group, “The XG Architectural

Framework, “Request for Comments Version 1.0”
 http://www.darpa.mil/ato/programs/xg/rfc_af.pdf
[8] XG Working Group, “XG Policy Language

Framework Request for Comments Version 1.0”,
http://www.ir.bbn.com/projects/xmac/rfc/rfc-
policylang-1.0.pdf

[9] “The BBN XG Projects”, visited September 29,
2005.
http://www.ir.bbn.com/projects/xmac/pollang.html

[10] Chih Fung Lam, Kei Sakaguchi, Jun-ichi Takada,
and Kiyomichi Araki, "Radio Security Module
that Enables Global Roaming of SDR Terminal while
Complying with Local Radio Regulation," 2003 Fall
IEEE Vehicular Technology Conference (VTC 2003
Fall), Oct. 2003 (Orlando, FL, USA).

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

http://www.ir.bbn.com/projects/xmac/pollang.html
http://srg.cs.uiuc.edu/swradio/hill_threat_wwc05.pdf
http://srg.cs.uiuc.edu/swradio/hill_threat_wwc05.pdf
http://www.gnu.org/software/gnuradio/
https://netfiles.uiuc.edu/kindrtnk/www/papers/article23.pdf
https://netfiles.uiuc.edu/kindrtnk/www/papers/article23.pdf
http://www.python.org/
http://www.darpa.mil/ato/programs/xg/overview.html
http://www.darpa.mil/ato/programs/xg/rfc_af.pdf
http://www.ir.bbn.com/projects/xmac/rfc/rfc-policylang-1.0.pdf
http://www.ir.bbn.com/projects/xmac/rfc/rfc-policylang-1.0.pdf
http://www.ir.bbn.com/projects/xmac/pollang.html

Dynamic Policy Enforcement For Software Defined Radio
(DPE for SDR)

Patrick Flanigan (flans@ncsa.uiuc.edu)
Von Welch (vwelch@ncsa.uiuc.edu)
Meenal Pant (mpant@ncsa.uiuc.edu)

National Center for Supercomputing Applications (NCSA)
Security Research Division

University of Illinois at Urbana-Champaign
November 17, 2005

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Motivation: Handheld SDR Issues

Who is holding the SDR?
What are the environmental conditions?
What policies are in effect?

Design Issues for Handheld SDR

• Parameters: user role, alert state, weather condition
• Roles: monitoring, implementing, validating
• Module-based: clear, task-oriented, bounded roles
• Compromising one module does not compromise all
• Ease of use – do not burden the user
• Design to ‘fail secure’ rather than ‘fail insecure’
• Vulnerability – coexistence of DPE and SDR

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Role-based Dynamic Policy Enforcement (DPE)

• The SDR and external factors must be monitored continuously
• Reconfiguration must be implemented securely and in real-time
• Policy compliance must be validated reliably and dynamically

Monitor (montor) handles all requests for changing the
current configuration.

Implementor (imptor) enacts the actual changes to
the SDR configuration.

Validator (valtor) references security policy to determine
whether the request is valid.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Overview of Entire System

imptormontor valtor

config
file

policy
file

download
policy
files

download
config
filesGUI

modulessensors

SDR modules

DPE

SDR

requests

events

pipes pipes

GNU SDR

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Sensors and GUI – Monitoring the SDR

(biometrics)

(signal)

(sensors)

user

alert state

weather

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Validation and the Security Policy File (XML-based)

Extensible Access Control Markup Language (XACML)
Replies: permit, deny, indeterminate, not applicable

• Policy Enforcement Point (PEP) receives and builds the request
• Policy Decision Point (PDP) makes the decision based on policy

PEP PDP PS
request

policy storedecision

Decisions: Targets, Rules, Conditions and Combining Algorithms

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Translation Matrix

3 dynamic parameters to determine the SDR configuration
• user role (RNS) (Restricted | Normal | Supervisor)
• alert state (LMH) (Low | Medium | High)
• weather status (FOI) (Fair | Overcast | Inclimate)

We can encounter 27 (3^3) permutations

S L F
S L O
S L I

S M F
S M O
S M I

S H F
S H O
S H I

N L F
N L O
N L I

N M F
N M O
N M I

N H F
N H O
N H I

R L F
R L O
R L I

R M F
R M O
R M I

R H F
R H O
R H I

map E1
E2

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Mapping Assumptions and Rules

• Each permutation must be mapped to a SDR configuration
• Two configurations… E1 and E2 where E2 is more secure than E1
• To simplify… make rules given user role and alert state

map
user role == S || alert state == H E2

map
E1user role != S && alert state != H

Request contains user, alert, weather

1) verify the user
2) determine the role of the user
3) apply the rule for configuration

Validate with policy

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Typical NCSA SDR Request

<Request>
<Subject>

<Attribute AttributeId="role"
DataType="http://www.w3.org/2001/XMLSchema#string"

<AttributeValue>supervisor</AttributeValue>
</Attribute>
<Attribute AttributeId="alert" DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>medium</AttributeValue>
</Attribute>
<Attribute AttributeId="weather" DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>fair</AttributeValue>
</Attribute>

</Subject>
<Action>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>configure</AttributeValue>
</Attribute>

</Action>
</Request>

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

NCSA SDR Policy

<Policy PolicyId="identifier:example:NCSA_SDR_Policy"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides">

<Rule>
<Description>

If the role == supervisor || alert == high, config = encryptor2, else config = encryptor1
</Description>
<Target>

<Subjects>
<Apply AttributeId="config"

DataType="http://www.w3.org/2001/XMLSchema#string">encryptor1</Apply>
<AttributeMatch AttributeId="role"

DataType="http://www.w3.org/2001/XMLSchema#string">supervisor
</AttributeMatch>
<Apply AttributeId="config"

DataType="http://www.w3.org/2001/XMLSchema#string">encryptor2</Apply>
<AttributeMatch AttributeId="alert"

DataType="http://www.w3.org/2001/XMLSchema#string">high</AttributeMatch>
<Apply AttributeId="config"

DataType="http://www.w3.org/2001/XMLSchema#string">encryptor2</Apply>
</Subjects>

</Target>
</Rule>
<Action>
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string">
<AttributeValue>configure</AttributeValue>

</Attribute>
</Action>

</Policy>

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Request Flow Diagram

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

NCSA SDR Stack Implementation

current version (SDR 2.5)
Python modules
FSK… digital data

early version (SDR 0.9)
C modules

FM… analog data

TX Path RX Path

source

security

sink

security

session session

TX Path RX Path

source

encryptor

GNU SDR

sink

decryptor

GNU SDR

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Implementing SDR Reconfiguration

source

encryptor1

GNU SDR

sink

decryptor1decryptor2

encryptor2

imptor

montor

valtor

config
file

DPE SDR

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Related Work

Next Generation (XG)
• Policy Conformance Reasoner
• Accredited Kernel
• Sensor

XG Working Group, “The XG Architectural Framework,
Request for Comments Version 1.0”
http://www.darpa.mil/ato/programs/xg/rfc_af.pdf
XG Working Group, “XG Policy Language Framework
Request for Comments Version 1.0”
http://www.ir.bbn.com/projects/xmac/rfc/rfc-policylang-1.0.pdf
“The BBN XG Projects” visited September 29, 2005.

Radio Security Module
• Software validation
• Lifecycle management

Chih Fung Lam, Kei Sakaguchi, Jun-ichi Takada, and
Kiyomichi Araki, "Radio Security Module that Enables
Global Roaming of SDR Terminal while Complying with
Local Radio Regulation“ 2003 Fall IEEE Vehicular
Technology Conference (VTC 2003 Fall), Oct. 2003 (Orlando,
FL, USA).

R. Hill, S. Myagmar, R. Campbell, Threat Analysis
of GNU Software Radio, World Wireless Congress
(WWC) , May 2005.

Threat Analysis
• GNU vulnerabilities
• Policy driven security

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Conclusions

Dynamic Policy Enforcement for SDR (abstraction to design)

• monitoring
• implementing
• validating

Modular design == highly adaptive and configurable

The future…
• policy enforcement for SDR
• maintain flexibility
• allow extensibility

Acknowledgement
This work is funded by the Office of Naval Research through the

National Center for Advanced Secure Systems (NCASSR)

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

