

EXPLORATION OF LEAST-SQUARES SOLUTIONS OF LINEAR SYSTEMS

OF EQUATIONS WITH FIXED-POINT ARITHMETIC HARDWARE

Thomas Cesear and Ramon Uribe
AccelChip, Carlsbad, CA, tom.cesear@accelchip.com / ramon.uribe@accelchip.com

ABSTRACT

One area of focus in Software Defined Radio (SDR)
systems is smart antennas. This is due to their ability to
provide enhanced communication capacity and minimize
interference. The optimum least-squares solution of linear
systems of equations is a key operation in state-of-the-art
communications systems including smart antenna systems.
These applications typically require very large amounts of
processing which makes implementations in cost-effective,
fixed-point hardware – in Field-Programmable Gate Arrays
(FPGAs) or Application-Specific Integrated Circuits
(ASICs) - the preferred implementation choice.

An efficient implementation of a least-squares solution
depends on essential characteristics of the vectors and
matrices that represent the system of equations when cast in
a linear algebra context. These characteristics include: the
size of the vectors and matrices, symmetry, as well as other
structural characteristics. These characteristics, along with
system requirements for a real-time application drive the
selection of a suitable algorithm for implementation.

1. INTRODUCTION

Traditionally, the implementation of the Least-Squares (LS)
solution has been done with general-purpose DSPs using
floating-point arithmetic. Floating-point arithmetic
minimizes round-off error making the implementation of a
LS solution less sensitive to this type of errors. On the
other hand, these implementations tend to be limited in
processing speed due to the use of a single floating-point
processing unit. The continued success of FPGAs and
variations of ASICs in the deployment of high performance
DSP algorithms makes them a very appealing
implementation fabric. These silicon fabrics, however, are
typically tailored for implementations with fixed-point
arithmetic. Consequently, the implementation of the LS
problem in these fabrics has the inherent challenge of
sensitivity to round-off errors as incurred with fixed-point
arithmetic.

Exploring alternatives early in the design process, while
its representation is still at a high level of abstraction,
affords the most leverage in terms of impact on the final

implementation speed and area cost. Algorithmic and
architectural optimization can frequently yield multiple
orders-of-magnitude impact on the speed-area solution
space of an algorithm. Algorithmic synthesis tools that use a
true top-down DSP design methodology enable a
collaborative design effort between algorithm developers,
system engineers and hardware designers by automating key
process steps at different levels of abstraction for an direct
implementation in fixed-point arithmetic hardware.

This paper presents an effective methodology for the
exploration of implementation alternatives of LS solution of
linear systems of equations in fixed-point hardware. With
the many available choices of algorithms, and the issues
related to finite-precision effects in fixed-point arithmetic,
the amount of effort required from a design team to arrive at
an effective implementation can be formidable. We will
describe a fine-grained parameterized model-based library
and algorithm synthesis tool that can be used to automate
the architecture tradeoff analysis and finite-precision effects
allowing the design team to evaluate potential
implementation options early and often in the design
process. The goal of this methodology is to enable
achieving an optimum implementation for a particular
application. More specifically, this paper will explore
different alternatives for a LS solution implementation
based on matrix factorization methods in a beamforming
application. These include Cholesky factorization,
triangular-orthogonal (QR) factorization, and singular value
decomposition (SVD) techniques. We will demonstrate how
this methodology can be effectively used for Software
Defined Radio (SDR) systems, and we will discuss in detail
the architecture, micro-architecture, and finite precision
tradeoff analysis of each of these alternatives.

2. BEAMFORMING

Figure 1 shows a basic narrowband beamformer with K
sensor elements arranged in a Uniform Linear Array (ULA);
this also shows a signal source sθ(t) impinging on the array
at an angle of incidence θ. The K beamformer weights (w1,
w2, …, wK) are used to linearly combine the array data
observation samples (x1(n), x2(n), …, xK(n)), and these are
set to ‘steer’ the response of the array for optimum

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

mailto:tom.cesear@accelchip.com
mailto:ramon.uribe@accelchip.com

reception. The output of the beamformer is the scalar output
y(n).

w1
*x1(n)

w2
*x2(n)

w3
*x3(n)

wK
*xK(n)

y(n)

sensor array
elements

broadside

θ

)(tθs

Figure 1 – Narrowband beamformer.

A Generalized Sidelobe Canceller (GSC) is a special
beamformer structure that allows the use of unconstrained
optimization methods in the design of the optimum
beamformer weights [3], [4]. The structure of the GSC is
shown in Figure 2.

x

ax

Figure 2 – Generalized Sidelobe Canceller (GSC).

The overall response of the GSC is given by
equation (1).

 y(n) = x(wc – Bwa). (1)

Here the constant beamformer weights wc are designed in a
data-independent fashion; the matrix B blocks the passing
of the input signal of interest in the lower path of the GSC;
and the weights wa are designed in an optimum manner
according to characteristics of the input data.. With the
signal of interest removed, the weights wa steer their inputs
(containing only interfering signals and noise) to generate a
signal that is subtracted from the output of the data-
independent path. This effectively cancels, in an optimum
manner, the interference from the output of the data
independent part of the GSC.

When the LS criterion is used, the computation of the
optimum beamformer weights wa is based on the solution of
a system of linear equations known as the deterministic
normal equation [1].

 Rxwa = b. (2)

Here Rx is the deterministic correlation matrix of the input
to the unconstrained section of the GSC, namely xa = xB;
and the vector b is the cross-correlation of the input xa and
the ideal response.

The optimum beamformer weights wa can then be
obtained via inversion of the correlation matrix Rx. From a
numerical stability point of view, it is well established that
the best approach to matrix inversion is not to do it
explicitly whenever possible 0. It is better instead to work
with the system of linear equations represented by (2) and
then solve this system using an adequate solution technique.
A number of effective techniques exist for solving the
deterministic normal equation in (2), this paper will focus
on three LS solution techniques: Cholesky factorization, QR
factorization, and SVD. These techniques are outlined in
Section 3. Traditionally, implementations of the solution to
(2) have been done with general purpose DSPs and floating-
point arithmetic. This type of implementation is less
sensitive to round-off errors (finite-precision effects). A key
disadvantage of these implementations, however, is the
limited processing power they afford due to the small
number of floating-point processing units commonly
available per device. A very appealing alternative for
implementation is to use FPGAs or ASICs which can offer
large amounts of parallelism hundreds of computational
units per device. One complication with these silicon fabrics
is that they are typically tailored for fixed-point arithmetic,
and implementation in fixed-point arithmetic is inherently
challenging because of sensitivity to finite-precision effects.

3. LEAST-SQUARES SOLUTION TO LINEAR
SYSTEM OF EQUATIONS

A linear system of equations can be cast in linear algebra
terms as follows:

 Ax = y, (3)

where:

1) A is an mxn data matrix containing the coefficients of
the variables involved in the set of equations,

2) x is an nx1 vector with n variables involved in the set
of equations,

3) y is an mx1 observation vector with the equations right
hand side values.

Depending on the dimensions of the system, and the
rank of the data matrix A, the system can have different
types of solution (or no solution at all). The specific type of
system of equations we will focus on in this paper is the
over-determined system of equations. This is the case where
the number of equations is larger than the number of
unknowns (m>n), resulting in a rectangular matrix A. This
type of system of equations arises in a number of important

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

areas such as radar, sonar, and other sensor array processing
applications in general. In these applications, snapshots of
sensor data form the rows of the matrix and the number of
columns is determined by the number of sensors in the
array.

An over-determined system of equations does not have,
usually, an exact solution. The solution to this type of
system requires instead some error criterion to judge the
optimality of such solution e.g., the minimization of the 2-
norm of the error as in a LS solution. The following sub-
sections outline the LS solution to an over-determined
system of equations and the use of different matrix
factorization techniques to find this solution.

3.1. Least-Squares Solution

The LS solution of an over-determined system of equations
as defined in (3) is the vector x that minimizes the 2-norm
of the error. This can be expressed as follows for the case of
real-valued matrices and vectors [5]

2

min yx
nRx

−
∈

A . (4)

Differentiating this error measure with respect to the vector
x results in the symmetric system of equations known as the
normal equations.

 ATAx = ATy. (5)

When the data matrix A has full column rank (i.e., it has
linearly-independent columns), the LS solution of the
normal equations is unique; multiple techniques to solve
equation (5) are available. On the other hand, if A is rank
deficient, the LS solution is not unique and more specialized
techniques are required to find the optimum LS solution.

3.2. LS Solution with Cholesky Factorization

Cholesky factorization is applicable when the data matrix A
is full rank. To solve the normal equations using Cholesky
factorization, the covariance of the data matrix A is used in
conjunction with the cross-correlation of the matrix A and
the observation vector. The covariance matrix of A is
defined as

 C = ATA. (6)

The cross-correlation is defined as

 p = ATy. (7)

The normal equations can then be expressed as

 Cx = p. (8)

Cholesky factorization can be applied to the covariance
matrix C when this is positive definite. In such case, this
factorization can be expressed as follows

 C = RRT, (9)

where R is an nxn upper-triangular matrix called the
Cholesky factor of C. Substituting for C in (8) we obtain

 RTx = z, (10)

where

 Rz = p. (11)

The LS solution x can then be computed via back-
substitution in (11) to obtain z, and then forward-
substitution in (10) using the computed z.

3.3. LS Solution with QR Factorization

Triangular-orthogonal factorization – commonly known as
QR factorization – is also applicable when the data matrix A
is full rank. In this technique, the data matrix A is factored
as the product of two matrices

 A = QR, (12)

where Q is an mxm orthogonal (unitary in complex case)
matrix such that QQ-T = I, and R is an mxn upper-triangular
matrix. The structure of the R matrix is of the form

 , (13)
⎥
⎦

⎤
⎢
⎣

⎡
=

0
R

R 1

where the R1 sub-matrix is of dimensions nxn and 0 is the
null matrix of dimensions (m-n)xn.

Substituting for A in the normal equations in (5), we
have the equivalent system of equations

 Rx = b, (14)

where

 QTy = b. (15)

The LS solution can then be found via back-substitution of
the reduced system of equations given by

 R1x = b1, (16)

where b1 is the nx1 vector containing the first n elements of
the vector b.

3.4. LS Solution with SVD

SVD is applicable to the LS solution even when the data
matrix A is rank deficient. In general, the SVD of an mxn
matrix A is defined as the factorization

 A = USVT. (17)
where:

1) U∈Rmxm is an orthogonal (unitary in the complex case)
matrix. The columns of U are the left singular vectors
of A.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

2) V∈Rnxn is an orthogonal (unitary in the complex case)
matrix. The columns of V are the right singular
vectors of A.

3) S = diag(σ1, σ2,…, σp) is an mxn diagonal matrix with
p = min(m, n) and (σ1, σ2,…, σp) are the singular
values of A.

By substituting A with its SVD in the normal equations (5)
we obtain after simplification

 SVTx = UTy. (18)

To compute an LS solution of the system of equations
involves creating the Moore-Penrose pseudo inverse of A
given by A+=VS+UT, with S+ being a diagonal matrix
formed with the multiplicative inverses of the non-zero
singular values of A placed on the diagonal. The LS
solution is then given by

 x = A+y. (19)

4. GSC BEAMFORMING EXAMPLE

The GSC beamformer floating-point MATLAB model
consists of two parts: 1) a top-level script, and 2) a
synthesizeable model of the LS algorithms (Cholesky, QR,
and SVD). The top-level script generates the input signals
and echoes the results to analyze the performance the
beamformer, this includes:

• A ULA array of sensors with 4 unity gain, omni-
directional elements operating in a narrowband
environment.

• A narrowband input signal of interest impinging at an
angle of 0o; this angle is commonly referred to as
broadside.

• A narrowband interfering signal impinging at an angle
of 10o and with the same amplitude as the signal of
interest. This results in a signal-to-interference ratio of 0
dB.

• Uncorrelated white noise to model receiver noise at a
level of -20 dB relative to the signal of interest.

The top-level script performs the data-independent
steering of the input sensor data vector as shown in
Figure 2. It also applies a blocking matrix B to the input to
generate the interference-and-noise-only data vector xa. This
script also invokes the various LS algorithms in a streaming
fashion to perform the adaptation of the spatial filter for
optimum interference cancellation.

The second part of the GSC beamformer MATLAB
model are the various synthesizable LS algorithm functions
(Cholesky, QR, and SVD) which perform optimum
cancellation of the interferer signal.

Figure 3 shows the beampatterns of the GSC. The top
plot shows the beampattern of the data-independent portion
of the GSC. This shows that the interferer signal impinging
at 10o suffers an attenuation of approximately 2dB relative
to that of the desired signal at 0o; this small attenuation is
the cause of the distortion in the received signal from the
broadside. The middle plot shows the overall GSC
beampattern. The improvement in the cancellation of the
interfering signal can be seen with the larger attenuation at
10o. This is what accounts for the cancellation of the
interferer signal obtained at the output of the GSC. The
bottom plot is a zoomed view of the overall GSC
beampattern to highlight the attenuation around 10o.

Figure 3 - GSC beam patterns using the QRD-RLS technique.

5. GENERATION OF THE FIXED-POINT MODEL

The starting point in our methodology for obtaining a
hardware implementation is the original, golden reference
floating-point MATLAB model of the GSC. The next step
is to define a fully parameterized fixed-point MATLAB
model. This model is directly coupled to the original
floating-point MATLAB model to maintain lockstep with
this golden reference as we move closer to the actual
hardware implementation. There are three critical aspects
for efficiency in this step:

1) The ability to intuitively associate fixed-point
parameters with variables in the floating-point
MATLAB algorithm description. This defines the
numerical precision for variables and the operations
performed on these in the algorithm.

2) The ability to quickly evaluate the finite-precision
effects on the overall performance of the algorithm.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

3) Automatic testbench generation to ensure identical
functionality between the golden reference floating-
point and fixed-point MATLAB models.

It is important to note that the process of defining a
fully parameterized fixed-point MATLAB model is
typically an iterative process. Iterations in this process aim
at minimizing the word-lengths associated with variables
and operations in the algorithm to minimize eventual
hardware implementation costs. At the same time, the
parameterization must be such that the finite-precision
effects of the algorithm are minimized.

In the case of the GSC, the numerical performance of
the implicit matrix inversion operation is measured by the
attenuation shown in the overall beampattern. With this
metric, several iterations were performed to define optimum
fixed-point arithmetic parameters for each LS algorithm
using the flow graph shown in Figure 4. This flow graph is
annotated on the right with the key capabilities of the
AccelChip DSP Synthesis tool which enable the efficient
execution of this step in the methodology.

Figure 4 – Fixed-point model definition.

Several input word-lengths were exercised with the
intermediate variables sized accordingly to avoid overflows.
The effect on the attenuation in the beampattern of the GSC
is shown in Figures 5, 6 and 7 for each LS algorithm.

Figures 5, 6 and 7 were used to select the word-lengths
for hardware implementation of the various LS algorithms.
For the Cholesky factorization technique Figure 5 was used
to select a 16-bit implementation, for the QRD-RLS
technique Figure 6 was used to select a 16-bit

implementation, for the SVD technique Figure 7 was used
to select a 13-bit implementation.

Figure 5 – Finite-precision effects of the Cholesky factorization

technique on the GSC Beampattern.

Figure 6 – Finite-precision effects of the QRD-RLS technique

on the GSC Beampattern.

Figure 7 – Finite-precision effects of the SVD technique on the

GSC Beampattern.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

With this, the end result of this step in our methodology
is a fully parameterized, fixed-point MATLAB model of the
GSC for each LS algorithm. Equally important, these
models have all the information for sizing of signals and
arithmetic operations necessary for the generation of a bit-
accurate hardware implementation.

The foundation for efficiency in the execution of this
methodology is the use of the AccelChip DSP Synthesis
tool to enable a high level of automation. This was
demonstrated via the implementation of a GSC beamformer
in an FPGA fabric. The results show the effectiveness of the
methodology when used in the implementation of
challenging SDR algorithms in fixed-point arithmetic
hardware.

6. HARDWARE IMPLEMENTATION

Figure 8 – Hardware implementation generation.

The final step in the methodology is to efficiently generate
the hardware implementation. There are two critical aspects
to achieve efficiency in this step:

1) The ability to quickly evaluate the impact of hardware
resource utilization (e.g., multipliers, pipeline stages,
etc.) throughout the algorithm. This ultimately allows
one to optimally tailor the hardware architecture of the
implementation to meet area/speed requirements.

2) The ability to automatically generate an
implementation that is bit-accurate against the fixed-
point model of the DSP algorithm. With this, the
hardware implementation unambiguously satisfies the
numerical precision requirements.

As in the case of defining the fixed-point arithmetic
parameters, generation of a suitable hardware
implementation is done iteratively. The iterations in this
step are aimed at finding the optimum balance of resource
utilization and speed of operation to meet the overall system
area/speed requirements. The process of generating the
hardware implementation using the AccelChip methodology
is summarized in the flow graph in Figure 8. This flow
graph is annotated on the right with the capabilities of the
AccelChip DSP Synthesis tool which enable the efficient
execution of this step.

Implementation results for each LS algorithm are
shown in Table 1. These results were obtained using Xilinx
ISE, targeting a Virtex-4 XC4VSX55 device with an overall
goal of maximum speed of operation and minimum use of
hardware multipliers.

Table 1 - Implementation results.
Cholesky QR SVD

Occupied Slices 1011 (4%) 3076 (12%) 8926 (36%)
DSP48s 37 1 129

Sustainable data rate 0.07 Msps 1.7 Msps 0.04 Msps

8. REFERENCES

[1] S. Haykin, Adaptive Filter Theory, Prentice-Hall, Englewood

Cliffs, New Jersey, 1986.
7. CONCLUSIONS

 [2] N.J. Higham, Accuracy and Stability of Numerical
Algorithms, Society for Industrial and Applied Mathematics,
Philadelphia, Pennsylvania, 2002.

This paper presented an efficient methodology for the
exploration of implementation alternatives of LS solution of
linear systems of equations in fixed-point hardware. There
are three essential steps in this methodology. First, the
capture of the DSP algorithm in a floating-point MATLAB
model. Second, definition of fixed-point parameters directly
coupled to the floating-point MATLAB algorithm
description. Finally, automated generation of a hardware
implementation that matches the fixed-point model and
meets area/speed requirements.

[3] D.H. Johnson and D.E. Dudgeon, Array Signal Processing
Concepts and Techniques, Prentice-Hall, Upper Saddle River,
New Jersey, 1993.

[4] B.D. VanVeen and K. Buckley, “Beamforming: A Versatile
Approach to Spatial Filtering,” IEEE ASSP Magazine, pp. 4-
24, April 1988.

[5] G. Golub, C. Van Loan, Matrix Computations, Third Edition,
John Hopkins University Press, Baltimore, Maryland, 1996.

[6] D. Rabinkin, W. Song, M. Vai, and H. Nguyen, “Adaptive
Array Beamforming with Fixed-Point Arithmetic Matrix
Inversion using Givens Rotations,” Proc. SPIE, 2001.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

