

SOFTWARE DEFINED RADIO IMPLEMENTATION CONSIDERATIONS AND
PRINCIPLES USING THE SANDBLASTER™ SDR BASEBAND PROCESSOR

Babak D. Beheshti, (B.Beheshti@ieee.org) ,

Tanuj Raja (Tanuj.Raja@Sandbridgetech.com), Sandbridge Technologies Inc.

ABSTRACT

The design flow and methodology for hardware centric
radio baseband processors is well established and
understood. However, migration to a software centric
baseband processor approach is still new to many designers.
The paradigm shift of viewing real time events from the
point of view of gates and registers to pointers and memory
offsets is not often easily grasped. This paper covers a new
design flow appropriate for a complete software driven
baseband processor using the Sandblaster™ SDR baseband
processor. Topics covered in this paper include
programming for the RF-Baseband Interface, Programming
the entire physical layer processing in C, handling
TDMA/CDMA time-critical events, Code/Data memory
considerations and layout, Multi-program support for multi-
mode radios, System Software Pseudo-code, Terminal
Reconfiguration Management, and Taking advantage of
Low Power Architectural features.

1. INTRODUCTION

Software Defined Radios (SDRs) offer a dynamically
reprogrammable method of reusing hardware to implement
the physical layer processing of multiple communications
systems and applications. SDRs can dynamically change
protocols and accept communications systems and
applications updates over the air as quickly as a service
provider requires this update. Rapid implementation of
numerous multimedia applications and multiple wireless
communication protocols is easily accomplished on a single
programmable platform utilizing an SDR baseband
processor. Furthermore, enhancing the terminal capabilities
with new protocols, applications, and functions is achieved
through over-the-air dynamic software downloads. This
capability reduces product feature support cost, time-to-
market, and risk while increasing handset OEMs and ODMs
R&D and manufacturing productivity.
The basic terminal model assumed in this paper is one with
a block diagram shown in Error! Reference source not
found.. The interface between the RF front end and the
baseband processing is a parallel n-bit or a serial digital
interface. The sample word size, in bits, is determined based

on BER and channel requirements. Extra bits increase the
overall dynamic range of the sampled data. It is assumed
that the RF front end block includes the down conversion
and the A/D and D/A circuitry to provide a purely digital
interface to the baseband processor. It is furthermore open
to implementation whether this digital interface is DMA
driven or directly controlled by the processor. In this
discussion, a DMA driven interface is assumed. The
Sandbridge baseband processor, SB3010 provides a 16-bit
parallel, DMA based I/Q interface for transfer of digital
Baseband data to/from the RF front end.

2. DESIGN FLOW

The design flow for a SDR bases baseband processor is
somewhat different from the traditional hardware based
designs. This design flow relies heavily on host based
development throughout the development cycle removing
the sequential nature of dependency on the hardware
platform availability to make fine-tuning of system
performance. The general steps in the development of any
air interface waveform using this methodology are listed
below:

1. Physical Layer Algorithm Development (floating
point) using MatLab, …

2. Translation to fixed point ANSI C
3. Simulate for algorithm accuracy in fixed point/ use

debugger to debug code
4. Modify code as necessary
5. Profile code for MIPS/MHz requirements
6. Optimize specific functions as necessary (only in

C)
7. High level partition the code into software threads

(tasks) using the API provided by the operating
system used.

8. Using the simulator supplied with the tool chain,
and possibly an event viewer examine latency
requirements

9. Repartition threads as necessary - balance system
load

10. Final system integration and hardware testing

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

mailto:B.Beheshti@ieee.org
mailto:Tanuj.Raja@Sandbridgetech.com

As can be seen in

Figure 1 below the development effort is front loaded,
where the cost and risk to system changes are significantly
lower than the back end. This significantly reduces risk and
development time as well as allowing for tremendous
visibility into the implementation because of the host base
development environment.

Figure 1 – SDR Based terminal Design Flow

3. PROGRAMMING THE ENTIRE SYSTEM IN C

Figure 2 shows the Sandblaster® tool chain. The platform is
programmed in a high-level language such as C, C++, or
Java. The program is then translated using an internally
developed supercomputer class vectorizing, parallelizing
compiler. The tools are driven by a parameterized resource
model of the architecture that may be programmatically
generated for a variety of implementations and
organizations. The source input to the tools, called. the
Sandbridge architecture Description Language (SaDL), IS a
collection of python source files that guide the generation
and optimization of the input program and simulator. The
compiler is retargetable in the sense that it is able to handle

multiple possible implementations specified in SaDL and
produce an object file for each implementation. The
platform also supports many standard libraries (e.g. libc,
math, etc.). The tools are then capable of producing
dynamic and static simulators. A binary translator/compiler
is invoked on the host simulation platform. From these
inputs, it is possible to produce a statically compiled
simulation file. If the host computer is an x86 platform, the
translator may directly produce x86 optimized code. If the
host computer is a non-x86 platform, the binary translator
produces a C file that may subsequently be processed using
a native compiler (e.g. gcc).

Figure 2 - Sandbridge Software Development Tool
Chain

For the dynamically compiled simulator, the object file is
translated into x86 assembly code during the start of the
simulation. In single-threaded execution, the entire program
Dynamically compiled single threaded simulation translation is
done at the beginning of the execution phase. Regions of target
executable code are created. For each compound instruction in
the region, equivalent host executable code is generated. Within
each instruction, sophisticated analysis and optimizations are
performed to reorder the host instructions to satisfy constraints.
When changes of control are present, the code is modified to
the proper address. The resulting translated code is then
executed.

4. CODE/DATA MEMORY LAYOUT

With the non-volatile memory size of most 2.5G mobile
phones in the several megabyte range, the code size for any
of the individual waveform physical layers, the constraint is
not the code size itself rather the cache hit rate. The cache
hit rate indicates how often the code is available in the
instruction cache of the baseband processor, eliminating
wait states to fetch the instructions from the external flash
memory.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

As for volatile memory (for scratch pad data memory), the
physical layer demands on the data storage needs to be

MMING FOR THE RF-BASEBAND
INTERFACE

There is a significant t in thinking of and
implementing the real-time d ta flow in a software based

6. MULTI-PROGRAM SUPPORT

The Sandb o combine

ultiple executables together, without going through the

and gather them into an archive (say

2.
ead of into an sbx file.

ay driver.c
Link

an be
le executable which will be resident in

E PSEUDO-CODE

Using tools,

ne possible pseudo-code for the main operational sequence

or all supported waveforms
 search

d
isp forms

r waveform selection

ine for the selected waveform physical and

 d
ll search

for the selected waveform physical
k

or

analyzed to assure that the needs of the program do not
exceed the handset’s available RAM. On the other hand, the
RAM requirements are to be kept at a reasonable level not
to exceed the budgeted power consumption for the handset.
As two examples, the Sony Ericsson P900 GPRS, HSCSD,
WAP, Java, MMS, HTML browser, email client, built-in
digital camera, touch-sensitive display, polyphonic
ringtones, MP3 player, MPEG 4 video, handwriting
recognition, Bluetooth, infrared, USB port and many more.
The phone is equipped with 48MB of RAM. The Nokia
9300 supports following bearers: CSD, HSCSD, GPRS
multislot class 10, class B, EGPRS class 10 Bluetooth, IR
(115 kbps). It has 64 MB SD RAM, 128MB Flash. Out of
the on-baord RAM, the free user memory is 80MB,
indicating amount used by the physical layer and the
protocol stack).

5. PROGRA

 paradigm shif

a
transceiver. The offsets in time are to be thought of as
offsets in memory buffers. Activation of specific events at
specific time instances are then computed in software and
then implemented using on-board timers. For example in a
TDMA based system, the time slots received in the receive
buffers are collected. Subsequently “cell-search” is
performed on the collected data, determining the start
position of the time slots and the transmission frame. Now
the indicator for the start of frame is simply a memory
pointer. Since the control software is aware of the
correspondence of the actual time of arrival of the data and
its location in the receive buffer, an offset into the buffer
can simply be converted to a calculated offset in time. This
offset in time is used to turn on an on-board timer. This
timer is programmed to initiate transmit of a frame to the
base station at the precise instant governed by the receive
frame start time. As software adjusts timing during
operation, the transmit time will also be adjusted to maintain
the critical strict timing relation between receiving and
transmitting. This idea is further developed later in this
paper.

ridge software tools have the ability t
m
difficult task of manual name mangling of conflicting names
in the two executable files. The user has to follow the
following steps to combine two executable files into a single
executable file.

1. Compile all the object files for a program (say
'prog1')
‘prog1.a’}
This will put all the prog1.o files in to the archive
'prog1 a', inst

3. Repeat the above steps for all programs so that you
have archives 'prog1 a', 'prog2.a' etc.

4. Indicate the main functions for these programs. For
example, prog1 0, prog2 () etc.

5. Write a program that will invoke these (set of main
functions) as and when needed, s

 them together.
cutables for several waveforms cAs a result, the exe

combined into a sing
the flash memory of the wireless terminal. This convenient
arrangement reduces the task of invoking different
waveforms to simply “calling a function” associated with
that waveform. Therefore even though traditional
approaches such as marking a flag in the non-volatile
memory and “re-booting” to the new waveform are still
possible and available, the process can be streamlined
significantly by this technique.

7. SYSTEM SOFTWAR

the convenient multi-program support of the
o
of the handset software can be composed as follows. It is
noteworthy that in the following sequence, user input via a
key press or menu selection would result in the
reconfiguration of wireless terminal into a new waveform.

Power on/Reset
F
 Perform cell
 Mark waveform as detecte
D lay all detected wave
Perform sky search
Display GPS data
Wait for user input fo
Do forever
If waveform selected
 Call the rout
protocol stack
If ifferent waveform selected by the user
 Perform ce
 If detected
 Call the routine
and protocol stac
 Else
 Display err

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

A typical startup of a detected waveform could be as

elect a base station
protocol stack

ing channel for incoming calls
calls

8. TERMINAL RECONFIGURATION

plementation of the terminal reconfiguration

Figure 3 - Typical Protocol Stack with O&M

 & M (Operations and Maintenance) is a protocol specific

• Status Request
 Request

9. PROJECTION OF POWER CONSUMPTION FOR

ased on the average power consumption derived for a

otal MHz demand = 1800MHz

ption = 3 Cores * N mW/Core

he following considerations are noteworthy in power

. The calculated power is average. It can be further

. Many power management techniques can be employed to

. The power consumption discussion above pertains to

12. CONCLUSION

everal techniques and approaches to implement SDR based

follows:

S
Activate upper layers/
Decode broadcast channel information
Enter idle mode
 Monitor pag
 Monitor keypad for user initiated out-going

MANAGEMENT

Im
management, control through “privileged over the air
command”, or local command or event triggered command
can all be easily implemented in software as the
SandBlaster™ SDR baseband Processor is capable of
supporting any control program as well as DSP algorithms.
A typical protocol stack configuration is shown below:

O
to any particular implementation whereby specific logical
channels carry commands and information for maintenance
of the wireless terminal. As seen in figure above, the O&M
protocol relies on the layers 2 and 3 that carry the signaling
for call processing. Proprietary commands such as the
following are typical O&M commands that can be relayed
to the wireless terminal over the air:

• Reconfiguration
• Firmware Update Request
• Restart Request

• Etc.

A PARTICULAR WAVEFORM

B
single core of a multi-core device, such as the Sandbridge
SB3010, one can estimate the expected power consumption
of any waveform once its MHz (or MIPS) requirements are
determined. This calculation is very simple in that the total
MHz is converted to the number of DSP cores required to
run the waveform in real-time (keeping the fractional part).
The number of cores is then multiplied by the nominal
figure for the average power consumption for the
waveform. The following example illustrates the power
consumption calculations for the 384kbps WCDMA
physical layer.

T
1800 / 600 = 3 Cores
Average Power consum

T
consumption calculations:

1
lowered by taking into account duty cycle of the running
code as per sleep mode and discontinuous
reception/transmission specifications of a standard
waveform.

2
significantly reduce the projected power number derived
above. These techniques include frequency and voltage
scaling, operating system based core/thread clock gating etc.

3
baseband only and therefore excludes RF section power
consumption.

S
terminals were discussed in this paper. As can be seen, the
techniques are evolving to be significantly different from
the “logic gate” approach. The success of a SDR based
terminal mostly depends on a powerful SDR processor
platform and the software development tools that enable the
designers in a timely design/implementation/debug cycle.
The Sandblaster™ platform along with its software
development environment used as an example in this paper
provide such a platform.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

13. REFERENCES

[1] B. Beheshti, J. Glossner, D. Routenberg, L.

[2]

[3]

[4]

Zannella, and P. Steensma, “Evaluation of Military
Waveform Processing on a COTS Reconfigurable
SDR Processing Platform“, Proceedings of
Software Defined Radio Technical Forum, Volume
A, pp. 147-151, 16-18 November, 2004,
Scottsdale, Arizona.
B. Beheshti, “A Study of the Technology
Migration Path of the Cellular Wireless Industry
from 3G to 3.5G and Beyond”, Proceedings of
2005 IEEE Long Island Systems, Applications and
Technology Conference (LISAT2005), May 2005,
Farmingdale, New York.http://www.sdrforum.org
D. Iancu, J. Glossner, V. Kotlyar, H. Ye, M.
Moudgill, and E. Hokenek, “Software Defined
Global Positioning Satellite Receiver”,
Proceedings of the 2003 Software Defined Radio
Technical Conference (SDR’03), HW-2-001, 6
pages, Orlando, Florida, 2003.
J. Glossner, D. lancu, J. Lu, E. Hokenek, and M.
Moudgill, “A Software Defined Communications
Baseband Design”, IEEE Communications
Magazine, Vol. 41, No.1, pp. 120-128, Jan., 2003.

[5] D. lancu, J. Glossner, E. Hokenek, M. Moudgill,
V. Kotlyar, “Software GPS receiver”, Accepted for
publication is the 2003 Software Defined Radio
Technical Conference and Product Exposition
November 17-19,2003 - Orlando, Florida.

[6] J. Glossner, S. Dorward, S. Jinturkar, M. Moudgill,
E. Hokenek, M. Schulte, and S. Vassiliadis,
“Sandbridge Software Tools”, in Proceedings of
the 3rd International Worksop on Systems,
Architectures, Modeling, and Simulation
(SAMOS.p3), July 21-23,2003, pp. 142-147,
Samos, Greece.

[7] J. Glossner, T. Raja, E. Hokenek, and M.
Moudgill, “A Multithreaded Processor
Architecture for SDR”, The Proceedings of the
Korean Institute of Communication Sciences, Vol.
19, No. 11, pp. 70-84, November, 2002.

[8] J. Glossner, E. Hokenek, and M. Moudgill,
“Multithreaded Processor for Software Defined
Radio”, Proceedings of the 2002 Software Defined
Radio Technical Conference, Volume I, pp. 195-
199, November 11-12, 2002, San Diego,
California.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

