
COST-EFFECTIVELY IMPLEMENTING 802.16 SDR USING SOFTWARE-CONFIGURABLE
ARCHITECTURES

Joe Hanson (Stretch Inc., Mountain View, CA, USA, hanson@stretchinc.com)

Bruce McNamara (Stretch Inc., Mountain View, CA, USA, bruce@stretchinc.com)

The 802.16 WiMAX specifications contain a rich set of
options addressing increasing bandwidth requirements for
“last mile” digital communications applications. This
wireless building block, however, is a fast-moving target
that cannot be adequately implemented using fixed
architectures such as FPGAs and ASSPs. This paper will
demonstrate how 802.16 can be cost-effectively
implemented using software-configurable processors which
merge hardware and software development in a single
design methodology based on C and using extension
instructions to hardware-accelerate high-speed signal
processing tasks, such as FFT and Viterbi decoding. By
abstracting hardware as software, software-configurable
processors achieve the same throughput as FPGA and high-
end DSP-based architectures while extending overall
programmability and flexibility to enable developers to
support evolving standards in a timely fashion.

1. INTRODUCTION

The need to increase wireless data transfer rates while
reducing deployment costs continues to keep the software-
defined radio (SDR) market in the state of flux. Continuing
innovation of new techniques to identify digital data
amongst large amounts of noise results in increased data
transfer bandwidth at greater distances but at the cost of
increasing overall computational complexity. Not only do
new algorithms give rise to new standards, they stress the
capacity of traditional processors and hybrid-based
architectures.
 The emerging WiMAX standard, also known as
IEEE 802.16, has garnered widespread support because of
the efficiency and additional revenue it promises to bring to
wireless applications. Figure 1 shows the basic receiver and
transmitter block diagram for an 802.16 implementation.
Many of these operations are computationally intense. For
example, on the transmitter the physical layer (PHY)
encodes the raw data stream and prepares it for
upconversion to an analog radio signal. On the receiver
side, the PHY extracts and then decodes the data stream
from an analog radio signal. Both of these blocks require
operations such as:
• Fast Fourier Transforms (FFT)
• Forward Error Correction (FEC)

• Block coding operations such as Reed-Solomon codecs
• Bit-level coding such as convolution encoding
• Viterbi decoding
• Quadrature Amplitude Modulation (QAM)
• Interleaving
• Scrambling

 The media access control (MAC) layer is more
control oriented and provides the interface between the PHY
and network layers by scheduling transport of packets from
the network layer according to quality of service (QoS)
requirements on the transmit side and reassembling data for
handing back to the network on the receiver side. The MAC
layer is also responsible for automatically requesting the
retransmission of any bad packets and maintaining
communications between base and subscriber stations.
Typically, a TCP/IP stack serves as the networking stack.
Of course, all of these layers must be interconnected to form
a complete system.

2. HARDWARE ACCELERATION WITHOUT A
FIXED IMPLEMENTATION

The continuing evolution of WiMAX makes basing a design
upon a fixed implementation such as an ASIC a risky
proposition. Certainly an ASIC can provide the required
performance, but it lacks the capacity to easily adapt to
changing requirements. To adapt in a timely and cost-
effective manner, a programmable development
environment is required.
Traditional processors such as those based on RISC or DSP
architectures provide the programmable foundation
necessary to keep implementations current but they lack the
necessary processing capacity to process WiMAX in real-
time. RISC processors are limited by a narrow data
bandwidth (only 4 bytes per clock for a 32-bit processor).
While DSPs support more efficient dataflow, like RISC
processors, they are tied to a general purpose and fixed
instruction set. DSPs and RISC processors can perform
only limited processing per cycle, and as a result processing
complex algorithms can take thousands to tens of thousands
of cycles.
 Software-configurable processors combine the
flexibility of a programmable processor with the high

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

performance of hardware acceleration by integrating
programmable logic into the processor pipeline. In this
way, developers can implement extension instructions,
which accelerate compute-intensive processing in hardware
but are accessible through software, enabling a single
extension instruction to perform the equivalent of hundreds
to thousands of cycles on a traditional processor. Extension
instructions are defined in program code using C/C++ and
are compiled into a bit stream by an optimizing compiler to
configure programmable logic resources tailored to meet
application-specific requirements. Through extension
instructions, performance can be increased from 10X to
100X.
 The software-configurable processors from Stretch,
for example, use an instruction set extension fabric (ISEF)
that serves as a programmable fabric interlocked to the
instruction pipeline (see Figure 2). Backed by a substantial
set of computationally rich resources—4096 arithmetic units
and 8912 multiplier units—computations can be accelerated
for any bit width. Additionally, 128-bit wide registers and
24 powerful DMA channels enable the ISEF to process
multiple data concurrently through a deep pipeline, enabling
developers to exploit inherent parallelism in algorithms to
significantly accelerate processing performance. Since the
ISEF is reconfigurable, multiple instructions can reuse the
same resources.

Figure 2 Software-Configurable Processor Architecture

3. ACCELERATING 802.16

The 802.16 WiMAX PHY makes use of a 256-point FFT
and Orthogonal Frequency Division Multiplexing (OFDM).
Depending upon the application, OFDM channel width can
vary, as can the particular modulation scheme. For
applications in noisy environments, FEC is mandatory and
the 802.16 standard offers a variety of choices here as well.
 Given the computationally intense nature of these
calculations and the high signal frequencies involved,
conventional RISC and DSP processors simply do not have

enough processing capacity to support both the high demand
of WiMAX baseband processing and control task
management at the same time.

In fixed implementations, such as ASICs, hardware
sources are locked, meaning that if multiple modulation
schemes, for example, are to be supported, then multiple
hardware implementations are required. Not only does this
drive up device cost, the additional development resources
necessary to create multiple hardware implementations
make such an approach impractical.
 With a software-configurable architecture, the
same hardware resources can be reconfigured to accelerate
completely different functionality. Because of the dynamic,
reconfigurable nature of software-configurable processors,
supporting multiple variations and schemes is a matter of
reconfiguring the programmable processing resources. Thus
it is possible for a single software-configurable processor to
operate across multiple channel widths such as 3.5 MHz, 7
MHz, and 10 MHz, as well as across modulation schemes
such as BPSK, QPSK, 16 QAM, or 64 QAM simply by
reconfiguring the integrated programmable logic resources.

The run-time reconfigurability of software-
configurable architectures provides an extended level of
flexibility to developers. As the need for different
instructions changes, so can the configuration. From a
development perspective, since extension instructions are
created by the compiler based on C code, adapting and
introducing new innovations to existing algorithms is a
straightforward process that eliminates the time-consuming
stages of hand-coding in assembly/HDL and profiling
performance. Note that dynamic reconfiguration overhead
can be reduced to zero for software-configurable
architectures. Unlike FPGAs, which introduce unacceptable
delay to the point of interrupting dataflow processing when
reconfiguring, software-configurable processors can “ping-
pong” between configurations so that new extension
instructions are available immediately.

This flexibility enables developers to scale
applications based on software-configurable architectures
easily. In this way, developers can create a base design that
serves as the foundation across a wide range of applications
and product variations, reducing design complexity and
overall development investment while speeding time-to-
market.

One of the most important efficiencies gained
using software-configurable architectures is the ability of
developers to design both hardware and software in a single
integrated development environment. Instead of requiring
two development teams, one for hardware and one for
software, developers write code in C/C++ and map
computationally intensive hotspots for implementation in
the ISEF through the use of extension instructions. Not
only does the compiler generate the appropriate extension
instructions, it schedules them to achieve optimal pipeline
parallelism to maximize single-cycle throughput. Put
another way, hardware is abstracted as software, greatly

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

simplifying the development process and avoiding time-
consuming manual optimization.
 Being able to perform operations in hardware and
in parallel introduces substantial processing efficiencies.
For example, consider the following implementation of an
FFT using Radix-2 on a Stretch software-configurable
processor. A single extension instruction is able to perform
sixteen 16 x 16 multiplies, eight 32-bit adds, and sixteen 16-
bit adds with rounding and rescaling.
 One critical bottleneck of RISC and DSP
architectures employing hardware acceleration through
coprocessors implemented as ASICs or discrete FPGAs is
dataflow. While the coprocessor is able to process large
amounts of data, the RISC or DSP is limited in how quickly
it can pass data to the coprocessor. Software-configurable
architectures overcome this limitation through the use of
wide registers. For example, the Stretch S5000 family of
software-configurable processors have 32 128-bit Wide
Registers (WR) that facilitate efficient transfer of data and
eliminate dataflow bottlenecks.
 In the case of FFT processing, an extension
instruction is able to pass three sets of 4 complex values to
the ISEF through wide registers for concurrent processing.
In terms of real-world performance, this translates to the
ability to perform a 256-point FFT in 4 µs. Developers can
achieve, by implementing a Radix-4 FFT, an additional 28%
performance improvement.

4. EFFICIENT CONVOLUTION

Forward error correction (FEC) compensates for the
presence of channel noise by transmitting data with enough
redundancy so that errors can be corrected on the receive
side. Because the data rate and distance over which data
can be transmitted are directly tied to the transmission error
rate, significant research investment continues to be made in
FEC technology. As a consequence, communication
systems must be able to support new innovations in FEC
technology if they are to take advantage of these to increase
system throughput and reliability while reducing cost.
 FEC schemes typically employ bit-level encoding
techniques such as convolution where each encoded bit is
generated by convoluting the current input bit with previous
input bits. WiMAX uses convolution encoding with a
constraint length (i.e., the number of bits used in the
convolution) of K=7 and a rate (i.e., the number of input bits
per output bit) of ½ (see Figure 3). A ½-rate encoder can be
followed by a puncture to produce other rates such as 2/3,
3/4, and 5/6.
 RISC architectures are notoriously inefficient at
bit-level operations. Programmable logic, on the other
hand, is particularly well suited to convolutions; for
example, an extension instruction can be implemented to
take 64 bits of input data and generate 128 outputs (see
Code Listing 1).

 Another feature of software-configurable
architectures, which accelerates bit-level processing, is the
capacity to store state information. In this way, a large
number of intermediate results can be efficiently transferred
between different extension instructions without incurring
excessive latency from load/store operations to preserve
these results as required by coprocessor implementations.
In this example, six input bits of history can be preserved
for use by the next convolution operation.
 Convolution can be traced from one stage to the
next for a ½-rate convolutional encoder, as illustrated by a
Trellis diagram (see Figure 4). As each new input is fed
into the encoder, state changes are propagated through K-1
shift registers while producing 2 output bits. As each new
bit comes in, each shift register transitions from one state to
another for a total of 26 possible states per input bit. A
Trellis diagram shows these transitions from one input to
the next. For example, let Sn = {S0, S1, …, SK-2}
represent the state bits at the nth stage. Assume the states of
the K-1 shift registers are set to 0, i.e, S = {0, …, 0} in the
initial stage (0th stage). If the new bit is 0, the state S will
continue to be at S={0, 0, …, 0} at the 1st stage. If the new
bit is 1, the state S will be S = {1, 0, …, 0}. The horizontal
axis can be considered symbol time 0, 1, …, etc, since each
input bit will be transmitted as a symbol in the
communication channel.
 The Trellis diagram is helpful in finding the most
likely sequence of codes when decoding a convoluted
bitstream. Viterbi coders are a particularly efficient way to
decode a bitstream because they record the most likely path
for each state at each Trellis stage, thereby limiting the
number of sequences needing to be examined. This
efficiency does not come without cost, as Viterbi decoding
is quite computationally intensive through the use of add-
compare-selection (ACS) for each state at each stage while
simultaneously tracking the history of the selected path.

Viterbi decoding has three primary steps: branch
metric computation, ACS, and traceback. The branch
metric (BM) measures the distance between the received
signal Rn = {Xn, Yn} and the appropriate output branch
level L={L1, L2}. Therefore possible output labels for a ½-
rate encoder are {0,0}, {0,1}, {1,0}, and {1,1}. The branch
metric is computed as follows:

BMn(L1, L2) = Xn * (-1)L1 + Yn * (-1)L2

yielding 4 possible branch metric values:

BMn(0, 0) = Xn + Yn
BMn(0, 1) = Xn – Yn
BMn(1, 0) = - Xn + Yn
BMn(1, 1) = - Xn – Yn

 Each state at each Trellis stage also has another
metric associated with it called the path metric (PM) that

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

needs to be updated each trellis stage and is computed as
follows:
PMj+1[i] = max(PMj[2i] + BM[i], PMj[2i+1] - BM[i])
PMj+1[i+32] = max(PMj[2i] – BM[i], PMj[2i+1] + BM[i]);
for i =0 to 31
where i is the index to the state and j the index to the Trellis
stage.
 The branch metric computation for 64 bits can be
performed by a single extension instruction (EI_ACS64 in
Code Listing 2). This extension instruction also adds the
branch metric with the path metric of the previous stage,
compares the path metrics of the two incoming pads,
updates the maximum path metric, and finally selects the
appropriate path. The extension instruction also performs
all ACS operations for all the states at one Trellis stage
concurrently (i.e., 32 butterfly operations in parallel). Path
metrics are stored as internal states and as processing
progresses through each Trellis stage, the function updates
output registers with one bit for each state indicating the
selected path (for a total of four bits for each state for an
accumulated 4*64 = 256 bits for all states). 128-bit store
instructions (WRAS128IU) move these bits to memory in
just two cycles.
 The final stage required to decode received
symbols into data bits traces backwards through the Trellis
along the most likely path. Typically, the length of
traceback is 4 or 5 times the constraint length of the
convolutional encoder. Depending upon the application,
traceback may not begin until the entire data frame is
received.
 Traceback begins from a known last state, typically
state 0. A final state of 0 is easily forced by sending an
extra K-1 bit to transition all states to 0. The particular bit
stored for each state determines which branch to traverse to
move from stage j to stage j-1. By traversing the Trellis in
reverse, the original input bit stream can be decoded.
 An optimized Viterbi decoder can be implemented
using a single extension instruction that performs traceback
for four Trellis stages (VITERBI_TB in Code Listing 2).
The function stores internal states to support the next round
of traceback while outputting four bits of the decoded
bitstream. Every second time VITERBI_TB is called, an 8-
bit segment of the bitstream is stored back to memory.
 This example illustrates the effectiveness of
implementing complex and evolving algorithms with a
software-configurable architecture. Note that similar
performance acceleration can be achieved when
implementing turbo codes and Read Solomon decoders. By
accelerating the compute-intensive functions, it is possible
to cost-effectively implement WiMAX, including PHY and
MAC processing as well as TCP/IP stack software, all on a
single 300 MHz device (see Table 1).

Current software defined radio applications rely
heavily upon hardware to cost effectively implement many
compute intensive functions in real-time. With the
introduction of software-configurable processors,

developers now have the ability to achieve exacting
performance specifications through optimized hardware
acceleration on a purely software programmable platform.

Code Listing 1
This program, written in C, makes use of user-defined
extensive instruction EI_CONVEN for convolution
encoding. WRAGET01 and WRAPUTI are stream
load/store instructions.

for (i = 0; i < N/128; i++) { // N is the total number of
output bits in convolutional coding
 WRAGET0I(&wd, 8); // load 64 bits of input data into
wide register wd
 EI_CONVEN(&wd); // extension instruction for
convolutional coding
 WRAPUTI(wd, 16); // store output bits (128 bits) to
memory

}

Code Listing 2
This C program uses extension instructions EI_ACS64 and
VITERBI_TB to implement an optimized Viterbi decoder.
WRAL16IU and WRAL128IU are 2-byte and 16-byte load
instructions and WRAS16IU and WRAS128IU are 2-byte
and 16-byte store instructions.

 for (i = 0; i < n/8; i++) { // n is the number of input bits at
convolutional encoder
 for (j = 0; j < 4; j++) { // for 4 Trellis stages
 WRAL16IU(&win, &indata_ptr, 2); // load (X, Y) input
 EI_ACS64(win,&lower_state,&upper_state); // perform
ACS for all the states at 1 Trellis stage

 }
 WRAS128IU(lower_state, &ls_ptr, 32); // store the input
bits (for the lower 32 states) to memory
 WRAS128IU(upper_state, &us_ptr, 32): // store the input
bits (for the upper 32 states) to memory
 }

 /* perform traceback */
 for (i=0; i<n/8; i++) {
 WRAL128IU(&wa, &ls_ptr, -32); // load the lower state
bits
 WRBL128IU(&wb, &us_ptr, -32); // load the upper state
bits
 VITERBI_TB(&wa, wb, mask); // perform trace back
for 4 stages
 WRAL128IU(&wa, &ls_ptr, -32);
 WRBL128IU(&wb, &us_ptr, -32);
 VITERBI_TB(&wa, wb, mask); // perform trace back for
another 4 stages
 WRAS8IU(wa, &decode_output, -1); // store decoded 8
bits to memory
}

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

Ethernet

PAPR
Reduction LPF IFFT Freq

Predistorter Interleaver QAM
Mapper FEC

Encoder

PHY

MAC

IP
Stack Wireless

Stack
QOS

Router Scheduler IP Segmenter
ARQ

RF

Airframe
Creation

Messaging

Figure 1 802.16 Receiver and Transmitter

FIR Freq / Time
Correction FFT Freq Domain

Equalizer

Channel
Estimator

Sync
Deinterleaver Soft

Demapper FEC
Viterbi

PHY

MAC

IP Stack IP
Reassembler ARQ QOS

Router
Airframe
Parser

Msg
Handler

Ethernet

RF

Table 1 Compute Cycles on Stretch Software-Configurable Processor

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

+

+

1-bit
del a y

1-bit
delay

1-bit
del a y

1-bit
delay

1-bit
dela y

1-bit
delay

Input

X Output

Y Output

S tage 0 S tage 1 S tage N-1

...

 0

 1

 2

 3

31

32

33

63

.

.

.

.

.

.

 0

 1

 2

 3

31

32

33

63

.

.

.

.

.

.

 0
 1
 2
 3

31
32
33

63

.

.

.

.

.

.

00

11

11
01

00

10

01

10

 0
 1
 2
 3

31
32
33

63

.

.

.

.

.

.

00

11

11

01

00

10

01

10

 0

 1

 2

 3

31

32

33

63

.

.

.

.

.

.

00

11

11
01

00

10

01

10

Figure 3 Convolutional Encoding with Constraint Length of 7 and ½ Rate

Figure 4 Trellis Diagram for ½ Rate and Constraint Length of 7

© 2005 Stretch Inc. All rights reserved.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© 2005 Stretch Inc. All Rights Reserved. Stretch, the Stretch logo, and Extending the Possibilities are trademarks of Stretch Inc.

Implementing an 802.16 SDR Using a
Software-Configurable Processor

SDR Forum , 2005

Bruce McNamara, Director of Applications Engineering at Stretch
with

Joe Hanson, Director of Business Development at Stretch
Michael Ji, Member Technical Staff at Stretch

Michael Leabman, Chief Technical Officer at Purewave Networks

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

2© 2005 Stretch Inc. All Rights Reserved.

Agenda

Software-Configurable Processor
Development Flow
Examples
Summary

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

3© 2005 Stretch Inc. All Rights Reserved.

CPU

Software-Configurable Processor

New Approach to Computing Applications
RISC

PROCESSOR
PROGRAMMABLE LOGIC

FOR APPLICATION-SPECIFIC
INSTRUCTIONS

Faster Time-to-Performance
H/W Compute Performance within a Software Design Flow

Greater Algorithm Flexibility and Control
Software Design Methodology in C/C++

Delivers Faster Time–to–Market
Integrated Programmable Solution

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

4© 2005 Stretch Inc. All Rights Reserved.

S5 Engine
Wide Register File (WRF)
• 32 Wide Registers (WR)
• 128-bit Wide
Load/Store Unit
• 128-bit Load/Store
• Auto Increment/Decrement
• Immediate, Indirect, Circular
• Variable-byte Load/Store
• Variable-bit Load/Store

ISEF
• Instruction-Set Extension Fabric
• Compute Intensive
• Arbitrary Bit-width Operations
• 3 Inputs and 2 Outputs
• Pipelined, Bypassed, Interlocked
• Random Logic Support
• Internal State Registers

RISC Processor
• Tensilica – Xtensa V
• 32 KB I & D Cache
• On-Chip Memory, MMU, FPU
• 24 Channels of DMA

ALU
FPU

32-BIT RF

C
O

N
TR

O
L 128-BIT WRF32-BIT RF

ALU
FPU

S5 ENGINE

ISEF
Instruction-Set

Extension
Fabric

DATA RAM
32KB

SRAM
256KB

D-CACHE
32KB

I-CACHE
32KB

MMU

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

5© 2005 Stretch Inc. All Rights Reserved.

Profile Code
Identify “Hotspots”

Specialized
Instructions

Implement ‘C’ Functions
in Single Instructions
Bit-Width Optimizations

Software Compiler
Instruction Generation
Instruction Scheduling

Multiple Data (WR)
Perform Operations in
Parallel

Efficient Data
Movement

Intrinsic Load Store
Operations
20+ DMA Channels

APPLICATION
C/C++

COMPILED
MACHINE

CODE

Compiler

Instruction
Definition

NEW INSTRUCTIONS

INSTRUCTION
GENERATION

TAILOR ISEF
TO APPLICATION

AUTOMATIC

Software Acceleration Development Flow

C
O

N
TR

O
L

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

6© 2005 Stretch Inc. All Rights Reserved.

OFDM
Block
Diagram

FIR Freq / Time
Correction

FFT Freq Domain
Equalizer

Channel
Estimator

Sync

Deinterleaver Soft
Demapper

FEC
Viterbi

PHY

MAC

IP Stack IP
Reassembler

ARQ QOS
Router

Airframe
Parser

Msg
Handler

Ethernet

RF

Ethernet

PAPR
Reduction

LPF IFFT Freq
Predistorter

Interleaver QAM
Mapper

FEC
Encoder

PHY

MAC

IP
Stack

Wireless
Stack

QOS
Router

Scheduler IP Segmenter

ARQ

RF

Airframe
Creation

Messaging

RECV

XMIT

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

7© 2005 Stretch Inc. All Rights Reserved.

Convolutional Encoder

+

+

1-bit
delay

1-bit
delay

1-bit
delay

1-bit
delay

1-bit
delay

1-bit
delayInput

X Output

Y Output

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

8© 2005 Stretch Inc. All Rights Reserved.

Optimizing the Convolutional Encoder

Seven 1-bit ANDs and XORs per output bit

Need puncturing to support 2/3, 3/4 and 5/6 rates
“Puncturing” means removing some bits from the bitstream
Pattern of removed bits depends on the rate

The ISEF efficiently implements bitwise operations
AND, XOR, lookup table, mux (if-else), etc.
Uses only the resources needed, no more

Extension Instructions are easily defined in C or C++

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

9© 2005 Stretch Inc. All Rights Reserved.

Viterbi Trellis Diagram

Stage 0 Stage 1 Stage N-1

...

 0

 1

 2

 3

31

32

33

63

.

.

.

.

.

.

 0

 1

 2

 3

31

32

33

63

.

.

.

.

.

.

 0

 1

 2

 3

31

32

33

63

.

.

.

.

.

.

00

11

11

01

00

10

01

10

 0

 1

 2

 3

31

32

33

63

.

.

.

.

.

.

00

11

11

01

00

10

01

10

 0

 1

 2

 3

31

32

33

63

.

.

.

.

.

.

00

11

11

01

00

10

01

10

Add-Compare-Select
“Butterfly”

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

10© 2005 Stretch Inc. All Rights Reserved.

Optimizing the Viterbi Decoder
Add-compare-select Part: For each of 64 states, must

1. Use soft decision inputs to compute branch metrics
2. Add/subtract branch metrics to state metrics (watch out for rollover)
3. Compare pairs of state metrics
4. Choose the larger metric and save a corresponding state bit

A single Extension Instruction can do all of this for all 64 states

Traceback Part: For each output bit, must determine the preceding
state and save the corresponding bit

A single Extension Instruction can do this for 4 states at a time

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

1© 2005 Stretch Inc. All Rights
Reserved.

Extension Instructions for Convolutional Encoder
#include <stretch.h>
#define K (7)
#define M (48)
#define M12 (48)
#define M23 (32)
#define M34 (48)
#define M56 (40)
static se_uint<K> code0, code1;
static se_uint<K-1> hist;

SE_FUNC void CONVEN_INIT(unsigned char c0, unsigned char c1)
{

code0 = c0; code1 = c1;
hist = 0;

}

SE_FUNC void CONVEN(SE_INST CONVEN12,
SE_INST CONVEN23,
SE_INST CONVEN34,
SE_INST CONVEN56,
WRA *d0)

{
int i;
/* up to M new input bits + K-1 history bits */
se_uint<M+K-1> dIn = ((se_uint<M>)(*d0), hist);
/* 2 convolutions per input bit */
se_uint<1> X[M], Y[M];
/* For each input bit, do two convolutions (length <= K)
* to produce two output bits. */
for (i = M-1; i >= 0; i--) {

X[i] = (code0(0) & dIn(i+0)) ^
(code0(1) & dIn(i+1)) ^
(code0(2) & dIn(i+2)) ^
(code0(3) & dIn(i+3)) ^
(code0(4) & dIn(i+4)) ^
(code0(5) & dIn(i+5)) ^
(code0(6) & dIn(i+6));

Y[i] = (code1(0) & dIn(i+0)) ^
(code1(1) & dIn(i+1)) ^
(code1(2) & dIn(i+2)) ^
(code1(3) & dIn(i+3)) ^
(code1(4) & dIn(i+4)) ^
(code1(5) & dIn(i+5)) ^
(code1(6) & dIn(i+6));

}

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

2© 2005 Stretch Inc. All Rights
Reserved.

/* 1/2 rate: no puncturing */
if (CONVEN12) {

hist = (se_uint<K-1>)((*d0)(M12-1,M12+1-K));
*d0 = 0;
for (i = M12/1 - 1; i >= 0; i--) {

*d0 = (*d0, Y[i], X[i]);
}

}

/* 2/3 rate: puncture using (Y1, Y0, X0) (drop X1) */
else if (CONVEN23) {

hist = (se_uint<K-1>)((*d0)(M23-1,M23+1-K));
*d0 = 0;
for (i = M23/2 - 1; i >= 0; i--) {

*d0 = (*d0, Y[2*i+1], Y[2*i], X[2*i]);
}

}

/* 3/4 rate: puncture using (X2, Y1, Y0, X0) (drop Y2 & X1) */
else if (CONVEN34) {

hist = (se_uint<K-1>)((*d0)(M34-1,M34+1-K));
*d0 = 0;
for (i = M34/3 - 1; i >= 0; i--) {

*d0 = (*d0, X[3*i+2], Y[3*i+1], Y[3*i], X[3*i]);
}

}

/* 5/6 rate: puncture using (X4, Y3, X2, Y1, Y0, X0)
* (drop Y4, X3, Y2 & X1) */
else { /* CONVEN56 */

hist = (se_uint<K-1>)((*d0)(M56-1,M56+1-K));
*d0 = 0;
for (i = M56/5 - 1; i >= 0; i--) {

*d0 = (*d0, X[5*i+4], Y[5*i+3], X[5*i+2],
Y[5*i+1], Y[5*i], X[5*i]);

}
}

}

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

3© 2005 Stretch Inc. All Rights
Reserved.

Extension Instructions for Viterbi ACS

#include <stretch.h>
#include "poly_para.h"
static const se_uint<1> parity[32] = {

0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1

};
#define NS (1<<(K-1)) /* the number of states */
#define NBF (NS/2) /* the number of butterflies */
#define SOFTBITS (6) /* the width of input soft bits */
#define PMBITS (11) /* path metric width in bits */
#define SIGNBIT (1 << (PMBITS - 1))
/* Internal state:
* PM: Keep path metric for each state at each Trellis stage
* STATE: For each state, keep the 4 least significant bits in the
* state of conv encoding states. This covers 4 Trellis stages.
*/
static se_uint<PMBITS> PM[NS];
static se_uint<4> STATE[NS];
SE_FUNC void _viterbi64_metric(SE_INST ACS64_INIT,

SE_INST ACS64,
WRA input, WRA *lowStates, WRB *highStates)

{
int i, j, k, aIn, aOut, bIn, bOut;
se_sint<SOFTBITS> x, y;
se_sint<SOFTBITS+2> xy[2][2];
se_sint<SOFTBITS+2> BM[NBF];
se_uint<PMBITS> pmsubbm[NS], pmaddbm[NS];
se_uint<4> newState[NS];
x = input(SOFTBITS-1,0); (1)
y = input(SOFTBITS+7,8);
/* compute the 4 branch metrics of one butterfly */
xy[0][0] = x + y;
xy[0][1] = x - y;
xy[1][0] = -x + y; (2)
xy[1][1] = -x - y;
/* Assign all the Branch Metrics
* The assignment depends on the polynomial generator
*/
for (i = 0; i < NBF; i++) {

j = integer(parity[integer((poly7[0]>>1) & i)]);
k = integer(parity[integer((poly7[1]>>1) & i)]); (3)
BM[i] = xy[j][k];

}

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

4© 2005 Stretch Inc. All Rights
Reserved.

/* Compute the path metrics associated with both outgoing branches
* from state 2*i and 2*i+1. ACS64_INIT initializes all metrics to 0,
* except state 0 which is set to a big number
*/
pmaddbm[2*0] = ACS64_INIT ? 100 : (PM[2*0] + BM[0]); (4)
pmsubbm[2*0] = ACS64_INIT ? 0 : (PM[2*0] - BM[0]);
pmaddbm[2*0+1] = ACS64_INIT ? 0 : (PM[2*0+1] + BM[0]);
pmsubbm[2*0+1] = ACS64_INIT ? 0 : (PM[2*0+1] - BM[0]);
for (i = 1; i < NBF; i++) {

pmaddbm[2*i] = ACS64_INIT ? 0 : (PM[2*i] + BM[i]); (5)
pmsubbm[2*i] = ACS64_INIT ? 0 : (PM[2*i] - BM[i]);
pmaddbm[2*i+1] = ACS64_INIT ? 0 : (PM[2*i+1] + BM[i]);
pmsubbm[2*i+1] = ACS64_INIT ? 0 : (PM[2*i+1] - BM[i]);

}

/* Compare & select butterflies
* "Out-of-place" form: (2*i, 2*i+1) -> (i, i+32)
* E.g.: (0,1)->(0,32) (2,3)->(1,33) ... (62,63)->(31,63)
* Because "out-of-place", need temp variables "newState"
* until all "state"s are used
*/
for (i = 0; i < NBF; i++) {

se_uint<1> mux[2];
aIn = 2*i; aOut = i; (6)
bIn = 2*i + 1; bOut = i + NBF;
mux[0] = ((pmaddbm[aIn] - pmsubbm[bIn]) & SIGNBIT) ? 1 : 0; (7)
mux[1] = ((pmsubbm[aIn] - pmaddbm[bIn]) & SIGNBIT) ? 1 : 0;
PM[aOut] = mux[0] ? pmsubbm[bIn] : pmaddbm[aIn]; (8)
PM[bOut] = mux[1] ? pmaddbm[bIn] : pmsubbm[aIn];
newState[aOut] = mux[0] ? (se_uint<4>)ident(0x08 | (STATE[bIn]>>1))

: (se_uint<4>)(0x07 & (STATE[aIn]>>1)); (9)
newState[bOut] = mux[1] ? (se_uint<4>)ident(0x08 | (STATE[bIn]>>1))

: (se_uint<4>)(0x07 & (STATE[aIn]>>1));
}

/* update the states since all old states have been read */
for (i = 0; i < NBF; i++) {

STATE[i] = newState[i]; (10)
STATE[i+NBF] = newState[i+NBF];

}
/* Output all the states with 4 bits per state */
*lowStates = *highStates = 0;
for (i = 0; i < NBF; i++) {

*lowStates |= ((se_uint<128>)(STATE[i] & 0xf) << (4 * i)); (11)
*highStates |= ((se_uint<128>)(STATE[i+32] & 0xf) << (4 * i));

}
}

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

5© 2005 Stretch Inc. All Rights
Reserved.

Extension Instructions for Viterbi Traceback

#include <stretch.h>
static se_uint<6> PRE_STATE;
/* For 64 state, use both *sa and sb for input bits
* (state0 = sa(3,0) ... state63 = sb(127,124))
*/
SE_FUNC void viterbi_tb_func(

SE_INST VITERBI_TB_INIT,
SE_INST VITERBI_TB,
WRA *sa, WRB sb)

{
int i;
se_uint<4> s[64];
se_uint<4> cur_s;
se_uint<6> ind, pre_s;
se_uint<8> sout;

for (i = 0; i < 32; i++) {
s[i] = (se_uint<4>) (*sa)(i*4 + 3, i*4); (12)
s[i+32] = (se_uint<4>) sb(i*4 + 3, i*4);

}
ind = VITERBI_TB_INIT ? 0 : PRE_STATE;
cur_s = s[integer(ind)];
if (VITERBI_TB_INIT)

PRE_STATE = 0;
pre_s = (se_uint<6>)((se_uint<2>)PRE_STATE(1, 0), cur_s); (13)

/* Note that the 4 MSbits of the traversed state are the input bits.
* Concatenating 2 traversed states of 4 stages apart produces 1 byte
* of output. These correspond to the bits originally input to the
* convolutional encoder.
*/
sout = ((se_uint<4>)PRE_STATE(5, 2), (se_uint<4>)pre_s(5, 2)); (14)
*sa = ((se_sint<120>)0, sout);
PRE_STATE = pre_s; (15)

}

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

6© 2005 Stretch Inc. All Rights
Reserved.

Viterbi Decoder Using Extension Instructions

#include "ei_isef.h"
#include "poly_para.h"
#define NSTAGES (N/2)
#define BYTES_PER_STAGE (32/4)
u8 align_alloc(16, ".dram.data") pathHistory[NSTAGES * BYTES_PER_STAGE];
void opt_viterbi_decoder_64_12 (s8 *Input, u8 *Output, int nBits)
{

int i, j;
int nOutBits, nOutBytes;
WRA in1, in2;
WRA out1a, out2a;
WRB out1b, out2b;
WRA a0, a1, a2, a3, a4, a5, a6, a7;
WRB b0, b1, b2, b3, b4, b5, b6, b7;
u8 *pOut;
s16 *ldx = (s16 *)Input;
WRA *sta = (WRA *)&pathHistory[0];
WRA *stb = (WRA *)&pathHistory[16];
/* Assumes nBits is a multiple of 16 */
/* Assumes tailbits (zeros) were added at the sending end */
nOutBits = nBits >> 1;
nOutBytes = nOutBits/8; (1)
/* setup the initial state inside ISEF */
ACS64_INIT(in1, &out1a, &out1b); (2)
/* Prolog */
for (j = 0; j < 4; j++) { (3)

WRAL16IU(&in1, &ldx, 2);
ACS64(in1, &out1a, &out1b);

}
/* Main body */
for (i = 0; i < nOutBytes - 1; i++) { (4)

for (j = 0; j < 4; j++) {
WRAL16IU(&in2, &ldx, 2);
ACS64(in2, &out2a, &out2b);

}
WRAS128IU(out1a, &sta, 32);
WRBS128IU(out1b, &stb, 32);
for (j = 0; j < 4; j++) {

WRAL16IU(&in1, &ldx, 2);
ACS64(in1, &out1a, &out1b);

}
WRAS128IU(out2a, &sta, 32);
WRBS128IU(out2b, &stb, 32);

}

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

7© 2005 Stretch Inc. All Rights
Reserved.

/* Epilog */
for (j = 0; j < 4; j++) { (5)

WRAL16IU(&in2, &ldx, 2);
ACS64(in2, &out2a, &out2b);

}
WRAS128IU(out1a, &sta, 32);
WRBS128IU(out1b, &stb, 32);
WRAS128IU(out2a, &sta, 32);
WRBS128IU(out2b, &stb, 32);

/* Perform Traceback */
sta -= 2; (6)
stb -= 2;
pOut = &Output[nOutBytes - 1]; (7)

WRAL128IU(&a0, &sta, -32); (8)
WRBL128IU(&b0, &stb, -32);
VITERBI_TB_INIT(&a0, b0);
WRAS8IU(a0, &pOut, -1); (9)

for (i = 1; i < nOutBytes; i++) { (10)
WRAL128IU(&a2, &sta, -32);
WRBL128IU(&b2, &stb, -32);
VITERBI_TB(&a2, b2);

WRAL128IU(&a3, &sta, -32);
WRBL128IU(&b3, &stb, -32);
VITERBI_TB(&a3, b3);

WRAS8IU(a3, &pOut, -1);
}

}

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

1© 2005 Stretch Inc. All Rights Reserved.

Demonstration System

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

2© 2005 Stretch Inc. All Rights Reserved.

7 MHz, 256-OFDM, single antenna
TDD (50% UL, 50% DL) Mcycles/sec % CPU

Phy receive (16QAM, ¾ rate) 76 25
Phy transmit (64QAM, ¾ rate) 16 6
Total 92 31

Example Performance

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

© 2005 Stretch Inc. All Rights Reserved. Stretch, the Stretch logo, and Extending the Possibilities are trademarks of Stretch Inc.

Implementing an 802.16 SDR Using a
Software-Configurable Processor

SDR Forum , 2005

Bruce McNamara, Director of Applications Engineering at Stretch
with

Joe Hanson, Director of Business Development at Stretch
Michael Ji, Member Technical Staff at Stretch

Michael Leabman, Chief Technical Officer at Purewave Networks

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

