MANAGING DYNAMIC PARTIAL RECONFIGURATION ON
HETEROGENEOUS SDR PLATFORMS

Jean-Philippe DELAHAYE, Christophe MOY, Pierre LERAY, Jacques PALICOT
IETR/Supelec-SCEE Laboratory, Campus of Rennes, France
{jean-philippe.delahaye, christophe.moy, pierre.leray, jacques.palicot} @supelec.fr

ABSTRACT

This paper deals with partial reconfiguration issues on
heterogeneous prototyping platforms (DSP/ FPGA). An
analysis of multi-standard physical layer applications in
terms of reconfiguration needs permits to extract several use
cases of reconfiguration in a multi-standard handset:
standard switching, mode switching, bug fixing, etc. The
main difference between these schemes of reconfiguration is
the level of granularity of the reconfiguration. We argue that
a configuration manager needs to handle this multi-
granularity of reconfiguration to optimize the change of
context (either reconfigurable hardware or programmable
software processing components) in terms of size of code,
time to reconfigure, etc. The analysis also helps to
determine the accurate level of flexibility needed through
the reconfigurable architecture at different scales. Within
this framework partial reconfiguration is an essential feature
for optimizing the reconfiguration inside FPGA. We aim
indeed at providing reconfiguration adequacy between re-
configurability capabilities of hardware resources and
reconfiguration needs of Software Defined Radio
applications. Architectural solutions are proposed to
implement partial reconfiguration on existing hardware
combining DSP and FPGA.

1. INTRODUCTION

SDR is expected to be the most appropriate answer to future
multi-standards handsets design challenges [1]. We can
predict that SDR systems will be heterogeneous in terms of
computing resources, in order to deal with a wide variety of
radio applications. This implies many research activities in
the fields of multi-processing and heterogeneous computing.
All the more so as dynamic reconfiguration is involved. But
even if solutions exist for DSP [2] where it is more natural
to support reconfiguration, it is less common in the field of
FPGA. We propose here a combined approach, from the
application side to the implementation on the platform, that
particularly match to FPGA. The idea is based on the
following major point: the reconfiguration request implied
by SDR applications will have multiple level of granularity.
Taking into account these granularity levels will be of
particular importance to manage efficient and speedy

reconfiguration at all levels of the system. The functional
architecture proposed here takes into account application
needs depending on the granularity of the reconfiguration.
This functional architecture allows to extract as much as
possible the flexibility offered by any reconfigurable
heterogeneous platform. This is straightforward for
processor-based systems and particularly suits FPGA
despite FPGA's limitations in terms of dynamic
reconfiguration [3]. Whereas the full flexibility of our
functional architecture is not reached in an implementation
using current FPGA (limitation of the column-based
configuration memory structure [4] of Xilinx FPGA), it
allows to obtain the best of their reconfiguration ability.

The paper is organized as follow. Next part is concerned
with an algorithms analysis of a multi-standard transmitter
including baseband processing functions of GSM, UMTS
UTRA/TDD, and 802.11g OFDM mode. Configuration
management needs are deduced. According to the fact that
the flexibility is strongly related to granularity, part 3
proposes a hierarchical model of configuration management
which allows to handle the multi-granularity of
reconfiguration. Part 4 presents the resulting functional
hierarchical architecture deduced from the previous point. A
concrete implementation is detailed in part 5, insisting on
the FPGA dynamic reconfiguration aspects.

2. APPLICATION ANALYSIS AND
CONFIGURATION NEEDS FOR
CONFIGURATION MANAGEMENT

Basically, The Software Radio aims at providing multi-
standards communications accesses using a hardware
platform based on shared processing resources. The
Software Radio hardware requires to be reconfigurable to be
able to switch from one processing mode to an other. It has
also to be heterogeneous to face the wide variety of
processing categories. It implies that the number of
configuration contexts to manage grows as the number of
standards increases multiplying the number of different
processing algorithms. The number of configuration also
depends on the type of reconfigurable resources of the
hardware platform. First, it is necessary to do a functional
baseband analysis to classify each baseband functions in
order to reduce overall configuration management
complexity. Having in mind the optimization of the

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

configuration management complexity, the classification of
the baseband functions in terms of parameters, needs of
hardware resources and needs of flexibility aims at reducing
the number of configuration contexts. The second step of
the application analysis is about the classification of the
context switching cases which determines the granularity of
a reconfiguration.

2.1. Multi-standards baseband functions analysis

The multi-standard functional analysis starts with a first
study of the baseband functions of the uplink transmitter of
three standards (GSM 900, UMTS UTRA/FDD, WLAN
802.11g mode). These standards have been chosen for their
wide variety of baseband signal processing. GSM is a
classical mono-carrier TDMA system, UMTS uses CDMA
techniques, and finally 802.11g offers a multi-carrier mode
(OFDM). Such a multi-standards transmitter involves all of
the conceptual challenges, to define a configuration
management architecture. We group the multi-standards
baseband functions into three functional classes presented
below. Gathering functions into classes highly favorises the
opportunity to use common operators [5] that can address
several processing roles by a simple change of parameters.

Modulation Class| |Data Handling Class Coding Class
Diff. Encodin e e
GSM LGI; Fr;t:: = +Partitioning Co(;::: ~E
: . iltering %
(Uplink) *Burst Bulding sInterleaving
*Burst Multiplex. +Crypto
- i *Block t./S: . _
_SP'e"‘d;ﬁ-% I e ‘;:0"“1 ZgrS“e" o | |CRC Coding
UMTS f/famm ng fame Equal. and Segment. | | .oony. or Turbo Coding
Mapping -Rate Matchin s e
UTRA/FDD = g Interleaving (1°, 2n)
*RRC Filtering “TrCh. Multiplex
(Uplink) *PhiyCh Segmentation
Mapping *Puncturing *CRC Coding
WLAN *IFFT +Phy Burst formation *Scrambling
802.11g *Pilot & cyclic prefix Ins. +Convolutional Coding
(Mode OFDM) | *Symbol shaping AR
moooooooooo oooooooooon ooooooooooo
o E o a o =} a
o o @
ofl FPGA ||o of| £ & g =
a a
=N iy ¥
o o 3
2 s 5|2 52 |FPGal |3
o o o ‘ o o o
o o o o o o
nooocoooooon coocooocooo ooocooooooo

Fig 1: 3 Standard Baseband Functions Classification and the
computing demand resources

The Coding Class includes functions like cyclic coding,
convolutional and turbo coding. Standards use a wide range
of coding schemata. Despite the extensive set of parameters
to handle the coding functions, these are generally based on
few operators as 1-bit linear shift register and modulo-2
adders. A high flexibility of the processing resources is
mandatory to reuse efficiently the common operators.

The Data Handling Class puts together the functions which
manipulate data packets. Due to the nature of functions
(concatenation, segmentation, multiplexing, etc.), the data
packet lengths are very different. These functions are

exclusively dedicated to data transfers. This class of
algorithms is largely control-oriented. It mainly requires a
lot of memory resources and flexibility to process different
kinds of data.

The Modulation Class corresponds to the baseband
functions which take place before transposition on
frequency carrier. In this class, the functions are
computation-oriented and data are often oversampled. High
throughput is needed by the filtering functions.

The general goal in each class of processing is to group
similar processing to maximize the reuse of hardware.
Grouping functions into classes helps when dealing with
configuration management. Despite grouping the functions
in three classes, parameters from a function to an other are
quite different. This is the reason why we associated to each
function a specific Configuration Management Unit (CMU).
Explanations about our configuration management
architecture is detailed more in depth in the next section.

2.2. The reconfiguration needs of multi-standards
applications.

The general goal of our studies is to reduce de configuration
management complexity as the configuration overload by
minimizing the resources to reconfigure during any context
switching. Many design considerations are involved to
optimize the reconfiguration such as the architecture, the
design methodologies or the parameterization studies, with a
common goal: to enhance the reuse of the processing blocks
[6]. In this part, we discuss about the multi-standards
application switching needs and afterwards we lean on this
analysis to propose our configuration management
architecture. The different types of application switches that
we define are the following:

Standard Switching: The standard switch is the most
demanding one. The transmitting chain between 2 standards
are hugely different. Almost, all the baseband processing
have to be reconfigured. Moreover, a standard switch not
only implies the physical layer but also the other higher
layer of the protocol stack.

Mode Switching: A mode switch is considered to be an
intra-standard context switching. Some standards define
several functional modes. In most of the cases, the mode
switch does not include changes of the higher level layer
and the mode parameters are often defined by the MAC
Layer. For instance in 802.11g is defined with several type
of mode DSSS, FHSS, OFDM. So in the case of mode
switch, reconfiguration are lighter than in standard switch
and it is not worth performing the same huge
reconfiguration.

Service Switching: A service switch on the physical layer
remains a intra-standard switch rather than a service switch
to the application level that could implies a standard switch.
A standard switch could be a request to increase the data

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

rate. For instance in 802.11g mode OFDM, a request to
change the data rate from 6Mbit/s to 54Mbit/s implies to
modify at least the mapping function from BPSK to 64-
QAM. So the service switch could be perform with
parameterization and reconfiguration of some of the
baseband functions. Then, a partial reconfiguration of the
transmitting chain is generally sufficient.

Performance enhancement, bug fixing:

The ability to reconfigure small parts of a processing chain
is necessary to allow some performances enhancement or
bug fixing when the system is already in use . The
possibility to change any processing patterns in chain is
closely related to design methodologies which have been
used during the definition of the processing chain
architecture and the possibilities of the hardware resources
to change such small parts of a given function. This type of
reconfiguration has to be performed without any
discontinuity of service for the user.

Actually, the different kinds of context switching, detailed
above should be supported in a SDR system. The given
configuration management architecture has to be able to
manage the different granularity levels of configuration to
optimize the reconfiguration. We propose, in the next
section, a hierarchical configuration management
architecture that will efficiently enable the handling of the
multi-granularity of configuration.

3. HIERARCHICAL CONFIGURATION
MANAGEMENT MODELLING

3.1. Config-Data Path Model

The communication applications are dataflow oriented, then
our approach, detailed in [7], is based on a data path model.
The functions of the SDR transmitting chain are mapped
into several Processing Block Units (PBU). Following this
approach, each PBU is optimized wusing specific
reconfigurable hardware resources.

In addition, a configuration path, also split into several
Configuration Manager Units (CMU), controls the
reconfigurable processing path. Each CMU, dedicated to a
type of PBUs, manages the configuration of a type of
baseband function in the chain. The split configuration path
offers the possibility to partially reconfigure the transmitting
chain by an independent reconfiguration of each PBU. The
distributed configuration management approach also
decreases its design complexity.

3.2. Hierarchical Configuration Management
Architecture

The section above presented the benefits of the
configuration datapath model. It is a base to manage the
heterogeneity of baseband processing functions and enable

the partial reconfiguration of the SDR transmitting chain.
The hierarchical configuration management model
illustrated in the Figure 2 is based on the config-data path
approach. This model is necessary to manage the multi-
granularity of configuration required by the different context
switching detailed in the section 2.2. It is composed of three
levels of hierarchy that are detailed below.

Config. Management Level |

I Stdl Std2 Std3

onfig. Manager
L1 CM
tandard Set |

Config. Management Level 2 ‘ o —-
I I I I Function:
Library
L2 CMU L2 CMU L2¢cMu | | L2 CMU -
Function Set Function Set Function Set Function Set T

/r' I T i
T 1 j== —
L3 CMU| [L3_CMU| [L3_CMU g’:’/ SV
Block Set Block Set Block Set ib?‘;

Config. Management Level 3

Figure 2: Hierarchical Configuration Management Model

Hierarchical level 1

The first level is split into 3 entities following the functional
classification described in Fig 1. This first high level
classification allows a control of category-specific functions
to manage parameters at the standard level. The
Configuration Manager L1 (L1 _CM) works at the standard
level as host toward the underlying levels of management.
This entity is in charge of choosing the functional units
which will constitute the entire configuration of the
baseband processing chain. At this level, generic functions
are handled as generic components. Any hardware
implementation is not yet considered.

Hierarchical level 2

The generic functions selected at level 1 are parameterized
at level 2 in accordance with standard specifications. The set
of attributes of each function is handled by the
Configuration Manager Unit L2 (L2_CMU) to create each
functional context of the entire processing chain. For
example, the generic function "bit to symbol mapping" of
the modulation class is set at level 2 to fit the selected
standard. In the case of 802.11g standard this setting could
be BPSK, QPSK, 16-QAM, 64-QAM constellation. In the
case of a mode switching the needed reconfiguration
directly involved the concerning L2 CMUs.

Hierarchical level 3

The processing data path architecture of this third level will
depend on the reconfigurable computing resources of the
hardware architecture. The complete processing path could
be formed by different types of reconfigurable resources in
accordance to the studies detailed in the first section. It
could correspond to configurable accelerators, array of DSP

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

blocks or a fine grain reconfigurable data path. The main
task of the (L3 CMUs) in the configuration path is to find
the available processing resources and configure them to
enable the execution of the functional context created at the
above level.

4. HIERACHICAL FONCTIONAL
ARCHITECTURE

This section presents a functional hardware architecture
made up of three main reconfigurable clusters. After an
overview of this heterogeneous architecture, each cluster is
described in further details.

This architecture fits the hierarchical configuration
management considerations, proposed in the previous
section. It allows first to answer the needs of handling the
multi-granularity of the context switching. Second, the
hardware architecture is separated into three main hardware
clusters. The cluster resources are specialized according to
the classification of the baseband functions into three
classes presented in section 2.1 and required performances.
These three clusters have the same general architecture: a
cluster is designed around a dedicated central processor with
separated data bus and program bus (as a typical Harvard
architecture). This allows to distinguish the configuration
data path from the processing data path. The processor unit
of the CM_L1 controls the three clusters to work together.
The CM L1 also manages the whole application
parameters.

The configurations of each cluster are controlled by the
L2 CM processor units. Each L2 CM is interfaced to a
processor designated as master. In addition to this master
processing unit, some other reconfigurable units are used to
speed up the data processing of the cluster. These
reconfigurable accelerators are various as the baseband
functions have different needs. So a L3 _CM is associated
with each different reconfigurable accelerators.

Coding Cluster: Software implementations, for the
functions of the coding class, are possible. But hardware
will be more efficient and will consume fewer resources.
Since data width is only one bit for this class of functions,
software implementations are generally under optimized
because of using 16/32 bits processors. Furthermore
hardware implementation is necessary to reach the expected
high throughput performances of 54Mbps in 802.11g. On
the other hand, facing the wide variety of coding schemes,
software flexibility (DSP) is mandatory. Consequently, the
coding cluster is composed of DSP aided by reconfigurable
co-accelerators accelerated through efficient dedicated
coprocessors corresponds to a suitable architecture for this
class of processing functions.

Data Handling Cluster: The high flexibility offered by the
GPP processors is interesting to run the wide variety of
handling functions of every standards. The data handling

functions almost perform only memory transfers, so a DMA
interface is useful between the processor and the memory.
The memory is a sizable arrays of SRAM blocks, it allows
to resize the array by switching-off the unused memory
blocks, depending on the handling function. Power saving
architecture design, for this class of functions, is a key
factor, as memory consumes a lot of power.

Modulation Cluster: Most functions handle data, up to 32
bits, which takes a lot of resources. Consequently, some of
these functions, like pulse shaping filtering will take
advantage of an implementation in dedicated configurable
hardware accelerators. One other point is the intensive
processing requirements of the Modulation class functions
which often necessitates a HW implementation.

The main goal of this model is to help defining features
needed by the hardware platform for SDR applications. The
Fig 3 depicts the model as an architecture with lots of
duplicated resources (multiple microprocessors and buses).
This just illustrates, for a good understanding, our
hierarchical view of the hardware platform.

I1_cM

Fig 3: Hierarchical functional architecture

For instance, in the CM part of the model, the multiple
microprocessors (called pP) are instantiated as multiple
tasks running on a processor of the hardware platform.

The next section illustrates in a more detailed manner the
effective implementation of this functional architecture in a
real platform.

5. HETEROGENEOUS HARDWARE SDR
PLATFORM

The use of reprogrammable (DSP), reconfigurable (FPGA)
devices [8] and more generally reconfigurable computing
architectures is commonly admitted for Software Radio. We
present the heterogeneous (GPP/DSP/FPGA) platform and
especially FPGA reconfiguration requirements to enable the
implementation of our model. We focus on the FPGA,
because it is foreseen as a good intermediate architectural
possibility between DSP and ASIC. FPGA combines the
flexibility of DSP and the throughput efficiency [9] of

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

ASIC. But this really makes sense only if we can efficiently
manage reconfiguration of FPGA. Mandatory requirements
are partial and dynamic capabilities of reconfiguration for
FPGA. Currently, a few FPGA devices enable dynamic and
partial reconfiguration [10]. Moreover, the system
architecture [11], [12] is a key factor to make embedded
these kind of reconfigurations.

5.1 From the Architecture Model to the platform.

The implementations on the platform are currently under
development. We present in this part the platform and the
drawn up implementations.

Our prototyping platform is composed of a GPP, a DSP, a
FPGA and different types of memories. The functional
architecture of the Fig 3 is mapped into this platform as it is
illustrated in the Fig. 4. It consists in gathering on each
category of HW processing device (GPP, DSP, FPGA) on
the one hand the PBU (in white on Fig. 4) and on the other
hand the CMU depending on their hierarchical level.

Extern. Storage IMem

Fig. 4: Platform architecture

The GPP and the external storage memories are resources
used from a standard PC station. The GPP is the host of the
rest of the platform. The L1 CM is a task running on the
GPP which controls the configuration the other platform
resources (DSP, PFGA). The control-oriented functions as
some Data Handling functions take advantages of the
flexibility of GPP.

The DSP is a C64 from TI. The DSP parts from the both
clusters Modulation and Coding Clusters are tasks running
of the C64. The DSP works as the master of the
(DSP/FPGA) subpart of the platform, Then the L2 CMUs
of the three cluster are also mapped on the DSP. The
position of master allows the DSP to manage the overall

configuration of the functions that run on the cluster
resources.

The FPGA of our platform is a Virtex -II device from
Xilinx. The following components of the functional model:
the hardware accelerators, the small co-accelerators and the
sizable array of blockRAMs are mapped into the FPGAs.
The partial reconfigurability is of course a mandatory
features to allow reconfiguration of a single component. The
L3 CMUs responsible for the configuration of the co-
accelerators are implemented as task into the puBlaze soft
processor. It allows to perform fine grain reconfiguration of
the FPGA without involving any external resources. Next
section details furthermore the internal architecture of the
FPGA to enable the partial dynamic reconfiguration.
Components Library: The Hardware and software designs
of the processing functions are stored in the external storage
memory of the platform where the configuration
management takes them.

5.2 FPGA architecture on the embedded platform.

At the initial stage the CM of the Host (GPP) downloads the
DSP boot program that includes in its data memory the
initial full configuration of the FPGA. It consist in the
FPGA design architecture. It includes an internal
configuration controller (uBlaze soft processor), the internal
reconfiguration interface (ICAP), the initial instantiations of
PBUs and the communication interfaces with the DSP.

SRAM
Gieneral library Storage

GPP Code
DSP Code lib
|

GPP (PC Station) ——

Com Port
T ¢

SRAM
D3P Code

[PPC/nBlaze]
Config. Local
controller [Bitstream Storage

DSP TI Co4 J

Exmif interface

Logic
Parts

FPGA

Fig. 5: Details of the FPGA architecture

The Fig. 5 illustrates this platform architecture with details
of the internal FPGA design that enable two types of
dynamic partial reconfiguration depending on their
granularity level. One stays internal in case of limited-scale
reconfiguration (for co-accelerators configuration) or design
parameterization (auto-reconfiguration). This implies to
interconnect the puBlaze to the ICAP internal configuration
interface. This kind of reconfiguration of the FPGA by an
processor (uBlaze) embedded in the FPGA is called self-

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

reconfiguration or auto-reconfiguration [13]. In this case,
small partial bitstreams are stored inside the FPGA, and the
use of auto-configuration let free the other HW resources of
the platform. At a larger scale reconfiguration for the HW
Accelerator is external. This implies to interface to
interconnect the DSP to the external SelectMap or internal
ICAP reconfiguration interfaces. The Bitstream
corresponding to the design of HW Acc. are stored in an
external SRAM memory.

6. CONCLUSION

Through the proposed models, this paper shows the trade-
offs to provide a full reconfiguration flexibility with a
reasonable hardware complexity from configuration
management to the hardware architecture. Actually, the
hierarchical functional architecture offers the maximum of
the reconfiguration flexibility. It allows to take as much
flexibility as possible from any kind of heterogeneous
platforms. As this functional architecture is not specific to
any platform or device, it will improve itself and will easily
take advantages of the future evolutions of reconfigurable
computing technologies in terms of flexibility. Following
this idea we already achieve to take into account existing
limitations concerning the partial reconfiguration of FPGA.

7. REFERENCES

[1] J. Mitola, "The software Radio architecture," IEEE Comms
Mag, vol. 33, no. 5, pp. 26--38, May 1995.

[2] C. Moy, A. Kountouris, A. Bisiaux, "HW and SW
Architectures for Over-The-Air Dynamic Reconfiguration by
Software Download," SDR Workshop of the IEEE Radio and
Wireless Conference, Boston, USA, Aug. 2003

[3] J.P. Delahaye, G. Gogniat, C. Roland, P. Bomel, "Software
Radio and Dynamic Reconfiguration on a DSP/FPGA

Platform," 3rd Karlsruhe Workshop on Software Radios, proc.
pp 143-151, Karlsruhe Germany, March 17-18 2004.

[4] "Virtex Series Configuration Architecture User Guide,"
Xilinx, Inc., 2100 Logic Drive, San Jose, CA
95124, XAPP151 (v1.6) March 24, 2003

http://www.xilinx.com/bvdocs/appnotes/xapp151.pdf.

[5] J. Palicot, C. Roland, "FFT a basic Function for a
Reconfigurable receiver," ICT Conf., Tahiti, 2003.

[6] DeHon, J. Adams, M. DeLorimier, N. Kapre, Y. Matsuda, H.
Naeimi, M. Vanier, and M. Wrighton., "Design Patterns for
Reconfigurable Computing," fccm, pp. 13-23, 12th Annual
IEEE Symposium on Field-Programmable = Custom
Computing Machines (FCCM'04), 2004.

[7] J.-P. Delahaye, J. Palicot, P. Leray, "A Hierarchical Modeling
Approach in Software Defined Radio System Design," SIPS
2005, Athens-Greece, Nov. 2005.

[8] M. Cummings, S. Haruyama, "FPGA in the Software Radio,"
IEEE Comms. Mag., vol. 37, no. 2, pp. 108-112, Feb. 1999.

[9] T. Claasen, "High Speed: Not the Only Way to Exploit the
Intrinsic Computational Power of Silicon," Digest of Tech.
Papers ISSCC 99, IEEE Press, pp. 22-25, 1999.

[10] S. Donthi and R.L. Haggard, "A survey of dynamically
reconfigurable FPGA devices," Proc. IEEE Symposium on
System Theory, pp. 422-426, 2003.

[11] M. Ullmann, M. Huebner, B. Grimm, J. Becker; "An FPGA
run-time system for dynamical on-demand reconfiguration,"
18th International Parallel and Distributed Processing
Symposium, 2004. Proceedings.pp.135, 26-30 April 2004.

[12] J.C. Ferreira, M. M. Silva, "Run-time reconfiguration support
for FPGAs with embedded CPUs: The hardware layer," Proc.
of the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05).

[13] B. Blodget, P. James-Roxby, E. Keller, S. McMillan and P.
Sundararajan. A Self-reconfiguration Platform. In proceeding
of 13th International Conference on Field- Programmable
Logic and Applications, FPL’2003, pp. 565-574. Sept. 2003,
Lisbon, Portugal.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

