

ADAPTIVE COMPUTING IC TECHNOLOGY ENABLES SDR AND

MULTIFUNCTIONALITY IN NEXT-GENERATION WIRELESS DEVICES

Author: John Watson, Co-founder and VP Marketing
(QuickSilver Technology, San Jose, California, USA, john.watson@qstech.com)

ABSTRACT

Third generation (3G) and fourth generation (4G) wireless
terminals will be required to provide exceptionally higher
levels of service than their second generation (2G)
counterparts. Ever-increasing demand for increased
mobility introduces several physical requirements (e.g.,
longer battery life, reduced size, lighter weight, etc.),
along with the requirements for massive processing power
gains. Additionally, there is an increasing consumer
expectation for software-defined radio (SDR), as well as
multifunctionality, whereby multiple upgradeable
standards, protocols, and applications can occur on a
single platform, thus enabling a worldphone.

Wireless devices are fast approaching a point in the
product development roadmap where, without a paradigm
shift in the basic design architecture that moves away from
fixed-function silicon technology, they will no longer be
able to meet both the service and the mobility demands,
simultaneously.

The ideal solution would be to take advantage of the

processing power of the ASIC while retaining the
flexibility of the DSP. This is the very essence of the
Adaptive Computing Machine (ACM), described in this
paper. The performance of an ACM for 3G devices,
including SDR, is validated in hardware through the
implementation of a series of baseband algorithms.
Benchmarks of the ACM performance are presented,
showing significant improvements to be feasible relative
to conventional IC technologies.

1. INTRODUCTION

QuickSilver Technology’s Adaptive Computing Machine,
a new class of digital integrated circuit, is an outcome of
its pioneering efforts in adaptive computing for
commercial use. The ACM is the only software-
programmable integrated circuit (IC) that combines high
performance, low power consumption, low cost, and
architecture flexibility in a single chip.

The inherent adaptability of the ACM’s architecture
allows algorithmic elements to be directly converted into

dynamic hardware resources during run time. Simply put,
software becomes hardware. The ACM changes on the
fly, adapting tens or hundreds of thousands of times per
second to create the exact hardware needed for that
moment in time. This results in the most efficient use of
hardware in terms of cost, size (silicon real estate),
performance, and power consumption. The flexibility of
the ACM enables not only SDR, but also longer battery
life and multifunctionality – ideal attributes for bringing
the PC experience consumers expect to next-generation
mobile, wireless, and convergent devices.

Like many good ideas, the ACM concept is relatively
simple, although its development requires a new approach
to how we think about computing technology.

2. ALGORITHMIC EVALUATION

During the initial development of adaptive computing
(AC) in the late 1990s, it became clear through
mainstream research that FPGA-based reconfigurable
computing (RC) has considerable limitations.
Conventional RC technology approaches the problem at
too macro a level. That is, RC tends to work at the level of
entire applications or algorithms. In reality, it is critical to
consider the problem at the micro level of algorithmic
elements.

Consider just how many core algorithmic elements
there are and for what purposes they are used. For
example, consider the number of elements used in word-
oriented algorithms, such as the compute-intensive Time
Division Multiple Access (TDMA) algorithm employed in
digital wireless transmission (see Figure 1 on the
following page). Any variants, such as Sirius, XM Radio,
EDGE, and so forth, form a subset of this algorithmic
class. Therefore, a single adaptable architecture that can
handle high-end TDMA will also be able to handle its less
sophisticated cousins.

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

mailto:john.watson@qstech.com

GSM
GPRS

TDMA

EDGE

XM Radio

Sirius

CDMA2000
IS-95A

GPS

MPEG2M
PE

G
4

W-CDMA

WLA
N

Voice
Compression

Music
Compression

Figure 1. Algorithm Space

Bit-
orientated

Word-
orientated

Once word-oriented algorithms have been evaluated,

consider their bit-orientated counterparts, such as
Wideband Code Division Multiple Access (W-CDMA) –
used for wideband digital radio communications of
Internet, multimedia, video, and other capacity-demanding
applications – and sub-variants such as CDMA2000, IS-
95A, and so forth. Other algorithms to consider comprise
various mixes of word-oriented and bit-oriented
components, such as MPEG, and voice and music
compression. The ACM architecture is able to cover this
very large problem space and all the points in between.

3. A HETEROGENEOUS AND FRACTAL
ARCHITECTURE

Our evaluations revealed that algorithms are
heterogeneous in nature, which means that, within a group
of complex algorithms, their constituent elements are
substantially different. In turn, this indicates that the
homogeneous architectures associated with traditional
FPGA-based RC approaches – which have the same
lookup table replicated tens of thousands of times – are not
appropriate for most algorithmic tasks. Even newly
advanced FPGAs that have numbers of more complex
elements like 18 x 18 multipliers don’t satisfy the
requirements of adaptive computing. The solution also had
to incorporate the need to achieve the ASIC “gold
standard” of high performance and low power
consumption within the adaptable architecture even if it
required rapid, real-time hardware adaptations from
unexpected algorithmic inputs.

The solution is to create a fractal architecture that
fully addresses the heterogeneous nature of the algorithms

(see Figure 2). Start with five types of nodes: arithmetic,
bit-manipulation, finite state machine, scalar, and
configurable input/output used to connect to the outside
world.

64-Node Cluster

16-Node Cluster

Node Types

4-Node Cluster

Matrix Interconnect
Network (MIN)

Bit-manipulationArithmetic Finite state machine Scalar

Figure 2. A Fractal Architecture

Each node consists of computational gates and its

own local memory cache (approximately 75% of a node is
in the form of memory). Additionally, each node includes
configuration memory, but unlike FPGAs with their serial
configuration bit-stream, an ACM has from a 32 to 128-bit
bus to carry the data used to adapt the device.

It’s important to realize that each node performs tasks
at the level of complete algorithmic elements. For
example, a single arithmetic node can be used to
implement different variable-width linear arithmetic
functions such as a FIR filter, a Discrete Cosine Transform
(DCT), a Fast Fourier Transform (FFT), and so forth.
Such a node can also be used to implement variable width
non-linear arithmetic functions such as ((1/sine A) x (1/x))
to the 13th power.

Similarly, a bit-manipulation node can be used to
implement different variable-width bit-manipulation
functions, such as a Linear Feedback Shift Register
(LRSR), Walsh code generator, GOLD code generator,
TCP/IP packet discriminator, and other complex functions.

A finite state machine node can be used to implement
any class of Finite State Machine (FSM). In the case of a
really large or complex FSM, the machine can be spread
across multiple FSM nodes, or different portions of the
state machine can be time-sliced across a single node. This

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

means that the node can be adapted to execute different
portions of the state machine on-the-fly.

A scalar node can be used to execute legacy code,
while a configurable input/output node (not shown in the
figure) can be used to implement I/O in the form of a
UART or bus interfaces such as PCI, USB, Firewire, and
other I/O-intensive actions.

A key advantage of the ACM’s architecture is that

any node can be adapted to perform a new function, clock
cycle-by-clock cycle. This means that any portion of the
ACM – from just a few nodes and interconnects up to the
entire chip – can be rapidly adapted, or changed. This
results in a radical change in the way algorithms are
implemented today. Rather than passing data from
function to function, the data can remain resident in a node
while the function of the node changes on a clock cycle-
by-clock cycle basis. It also means that, unlike an ASIC
implementation, the ACM can be adapted tens or
hundreds of thousands of times a second, so that only
those portions of an algorithm that are actually being
executed need to be resident in the chip at any one time.
This reuse of gates enables tremendous reductions in
silicon area and power consumption as adaptations can
happen in a micro-state rather than at the larger algorithm
level (changing a FIR filter hardware element rather than
completely rewiring the whole TDMA application). In the
case of the ACM, this micro-adaptability versus a larger
more modal (macro) adaptability allows for much more
flexibility.

Algorithms have a locality of reference nature,
meaning they always move from one mathematical step to
the next immediate mathematical step and data is only
passed to that next step (this can involve several steps in
parallel but they are still the next logical data movement).
This knowledge means that the wiring needed between
next logical steps should be very dense, but the converse is
not true. Unlike an FPGA that has very dense wiring along
its whole XY plane, the ACM can reduce its wiring
structure by understanding that algorithms do not
communicate, or spread out, to the far ends of the silicon
area. The algorithm always moves data to the next logical
step. Therefore the ACM's wiring is fractal in nature; the
further away any two nodes are, the less wiring there is
between them. The closer two nodes physically reside, the
more wiring there is between them.

Since the ACM’s architecture is fractal in nature, it is
totally scalable. A 4-node cluster is formed from
arithmetic, bit-manipulation, FSM, and scalar nodes,

which are connected via a Matrix Interconnection
Network (MIN). A 16-node cluster is formed from four 4-
node clusters linked by their own MIN, while a 64-node
cluster is formed from four 16-node clusters linked by
their own MIN, and so forth. An ACM can contain from
one to thousands of node clusters, as required.

Because the architecture of the ACM is designed to

efficiently compute and manipulate information at the
algorithmic element level, it has a fractal wiring plane and
heterogeneous compute array that can adapt on a single
clock cycle to hold data in one physical area, while
moving the logic around the data. It is very different from
FPGA architectures that were originally built for TTL
absorption, and ASIC prototype bug-fixes with an XY
wiring plane that tie together all configurable logic blocks
(CLB) with the same wiring structure as a homogeneous,
fine-grained CLB array with very slow reconfiguration
rates aimed only at complete algorithm model reuse.

 These architectural differences lead to faster and
easier ways to map applications into the chip’s circuitry.
While FPGAs and ASICs use high-level Hardware
Description Languages (HDLs) and hardware synthesis,
the ACM’s tools are able to abstract the hardware
specifics from the application, which can then become
more like an embedded C design tool flow.

4. SPATIAL AND TEMPORAL SEGMENTATION

The spatial and temporal segmentation (SATS) process of
the ACM enables SDR to occur. Unlike conventional IC
technologies, the ACM architecture adapts to the problem
at hand, enabling timesharing, or spatial and temporal
segmentation. SATS is the process of mapping algorithms
for a given task to dynamic hardware resources, then
rapidly performing various portions of an algorithm in
different segments of time (temporal) and in different
locations in the adaptive fabric (spatial) of the ACM.

With SATS, the ACM’s gates are rapidly reused,
bringing into existence for the exact amount of time
needed -- clock cycle by clock cycle -- the hardware an
algorithm requires, and then efficiently running any
number of different algorithms on the hardware engine.

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

Figure 3. Temporal Sharing

The temporal sharing aspect of the ACM fabric is

illustrated in the Vocoder example, Figure 3. As each new
task of the vocoder is needed, its binary file is loaded onto
the ACM fabric from the cache. As the task is completed,
it is removed from the fabric and the resources are freed
for the next task. The ACM is adapting itself 400 times
per second. In this example, the size of the ACM fabric is
determined by the largest single element in the eight tasks.
The other seven routines are able to run in the same space
as the largest task. This reuse of the ACM fabric results in
significantly more efficient use of the fabric and reduced
costs.

5. DESIGN ADVANTAGES

ACM designs are represented in the SilverC™ language,
which is C augmented with temporal and spatial
extensions. Applications are developed in SilverC, and
then compiled, to be expressed as downloadable
applications in SilverWare™ binary modules. This means
that, unlike an ASIC-based implementation in which
algorithms are effectively frozen in silicon, the ACM can
be quickly and easily adapted to accommodate the
numerous evolving standards and protocols used in
today’s designs. In addition to accelerating time-to-
market, this approach eases design reuse and reduces the
risk of failure.

ACM technology also eliminates the very difficult
problems associated with hardware/software co-design
because the entire system is initially represented as
software. Having said this, it’s important to understand
that SilverWare™ is not executed by the ACM in the same

way that machine code is processed by a DSP, i.e.
executing a long stream of instructions. Instead,
SilverWare™ is used to dynamically adapt the ACM on-
the-fly to create the exact hardware needed to perform
whichever algorithmic tasks are required at any particular
time. Complex algorithmic elements can be thought of as
the smallest operators, and many of these complex
algorithmic elements are temporally or spatially combined
to form an application. In essence, software becomes
hardware.

Because software is easier and faster to develop than

the hardware of ASICs – hours or days vs. several months
or years, based on the number of functions – a developer
can rapidly move from design concept to silicon
implementation for a product. Working in software also
enables developers to make changes at any time during the
design cycle, as well as after product shipment. For
example, if updates or bug fixes are needed, turn around
can quickly occur in software rather than going through
the long lead-time and costly re-spin cycle of an ASIC.

6. THE BENCHMARKS

The first ACM test chip was compared to best-in-class
ASIC implementations for a number of compute-intensive
wireless functions. To date, these tasks have always been
implemented in ASICs because DSP and FPGA
implementations are much too slow, too power hungry,
and use too much silicon area.

For example, as demonstrated in February at the

Consumer Electronics Show (CES) in Las Vegas, the best-
in-class ASIC was compared to an ACM for a
CDMA2000 searcher with 2x sampling, using 512-chip
complex correlations, with captured data processed at an
8x chip rate (equivalent to 16 parallel correlators running
in real time). The ASIC took 3.4 seconds, while the ACM
took only 1.0 seconds (3.4 x faster). In the case of a
CDMA2000 pilot search, with the same parameters as
above, the ASIC took 184 ms, while the ACM took only
55ms (3.3 x faster). For a W-CDMA searcher with 1x
sampling using 256-chip correlations with streaming data,
the ASIC took 533 µs while the ACM took only 232 µs
(2.3 x faster). Furthermore, in addition to out-performing
the three ASIC implementations, the single ACM
counterpart performed all three tasks, used significantly
less silicon real estate, and consumed only a fraction of the
power.

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

7. THE MARKETPLACE

The software-to-hardware capability of the ACM
technology enables OEMs of mobile, wireless, and
convergent devices to achieve faster time to market, lower
cost of development, higher margins, as well as the ability
to extend the life of products, increase revenues,
immediately react to market trends, create product
differentiation, and build brand loyalty by offering a wide
range of add-on features and functionality after the initial
product sale. Service providers can go beyond their
limited price-per-minute business model, with faster time
to market, and new revenue streams for added features and
services.

7.1 End-user advantages

By accessing any number of protocols, consumers will
experience seamless roaming throughout the world,
staying “connected” via the same single mobile device.
Additionally, the ACM enables a single mobile/wireless
product to perform a variety of functions, rapidly changing
from a digital camera, to streaming video, to data retrieval,
email, Internet and Intranet access, a global positioning
system, or an MP3 player. The applications are limited
only by the imagination. Today’s handsets will essentially
become mobile communicators with media rich
(data/voice/image/video) applications and the needed
features to call, page, email, and stay connected – at any
time, and anywhere in the world.

For more information about QuickSilver Technology and
adaptive computing, visit www.quicksilvertech.com.

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

http://www.quicksilvertech.com/

