
THE VANU SOFTWARE RADIO SYSTEM

Dr. John M. Chapin (Vanu, Inc., Cambridge, MA, USA, jchapin@vanu.com)

Dr. Vanu G. Bose (Vanu, Inc., Cambridge, MA, USA, vanu@vanu.com)

ABSTRACT

 Vanu Software Radio is a software architecture,
implementation, and system design that has been used to
implement a variety of waveforms, including voice and
data standards for cellular and public safety systems.
VSR applies modern software engineering to the high-
speed signal processing code of a radio. The goal of the
design is to combine software modularity, portability, and
rapid development with excellent performance. This paper
provides an update on the VSR design, which has evolved
significantly in recent years from its origins in the MIT
SpectrumWare system, and gives status and performance
results of recent projects, including an all-software GSM
basestation demonstrated at CTIA 2002 and a multimode
multiband sleeve for a commercial PDA.

1. INTRODUCTION

 Vanu, Inc. licenses SDR software and provides
design consulting services to communications device
manufacturers and users. The company focuses on the
software problem of software radio: how to reduce the
engineering cost of the highly sophisticated code needed
for SDR systems. The company's approach includes
strong software engineering, innovations in signal
processing algorithms, a commitment to high level
languages and portable code, and COTS-based system
designs that combine these benefits with high
performance and cost-effectiveness.

Vanu, Inc. was founded as a spinoff of the 1994-1998
SpectrumWare research project at MIT. SpectrumWare
developed the technology needed to use COTS PCs as
SDR platforms. The project's novel aim was to use the
general-purpose CPU of the PC as the SDR signal
processing engine. In fact, SpectrumWare ran the SDR
application as a normal process on top of a standard
desktop operating system. Vanu, Inc. has since branched
out to employ a variety of embedded platforms, signal
processing engines, and operating systems. However, the
SpectrumWare heritage remains visible in the company's
focus on implementing all SDR software, including the
high-speed signal processing subsystem, as a portable
application that exploits high-level languages and
standard operating system APIs to the extent possible.

The company is active in military, public safety,
intelligence, and commercial applications of SDR. For
example, Vanu won a JTRS Step 2B contract for small

handhelds and developed a telematics prototype for a
tier-1 supplier to the automotive industry. Through its
activities the company has developed implementations of
a variety of waveforms. Highlights include GSM
basestation, IS-136 TDMA mobile, IS-95 CDMA mobile,
Project 25 mobile (a standard digital public safety
waveform), and Mobitex (used by the RIM Blackberry).

The experience gained in developing these
waveforms has guided ongoing improvement of the Vanu
Software Radio approach, or VSR. VSR comprises the
software architecture, high-speed implementation
techniques, and system design that work together to
significantly reduce the cost of SDR software. This paper
provides a snapshot of where VSR is today and a roadmap
for future development.

2. DESIGN PHILOSOPHY

Software costs are a significant and growing
component of SDR engineering costs. In all but the
highest-volume applications, the amortized cost of
software is a major part of SDR device unit cost. While
these facts are widely known, few SDR developers follow
through to the logical conclusion: that software cost issues
must be considered as a primary engineering tradeoff
throughout SDR system design. In Vanu Software Radio,
this imperative is reflected in a set of design choices that
maximize software reuse and minimize development and
maintenance effort.

2.1 Portability

VSR achieves much better software portability than
other SDR approaches, especially when the high-speed
signal processing software is considered. Most of the
high-speed software is written in portable high-level code
(C and C++). This is supported by selecting processing
engines for which there are compilers that can produce
highly efficient code. General-purpose CPUs have the
best compilers, while some DSPs support acceptably good
ones. Other DSPs require hand-tuning of assembly code
to achieve good performance, and are thus less desirable.
Similarly, current FPGA and reconfigurable hardware tool
chains can only produce efficient output if given a
toolchain-specific restricted form of source code. The
VSR philosophy is to use the latter processing engines to
the minimum extent needed to meet customer
requirements, while keeping the bulk of the processing on
an engine that can efficiently execute the portable version
of the code. For the same reasons, VSR systems use

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

COTS operating systems and rely on standard OS APIs to
the extent possible.

2.2 Component Reuse

VSR software uses highly standardized internal
interfaces and a custom-developed middleware package to
ensure that processing components can be reused across
families of related waveforms.

Component reuse is not a perfect strategy. Some
software components are widely used and well-defined,
but too slow if implemented with a reusable component.
Examples include Fourier transforms and FIR filters, for
which the code needs to be specialized both to the
platform and to the particular variant of the task being
performed. In cases like this, VSR exploits tools that
automatically generate the efficient implementation for a
given task on a given platform. Research to develop these
tools has been part of the work carried out at Vanu, Inc.

2.2 Generic hardware architecture

VSR systems follow a generic hardware architecture.
Many existing SDR systems take a different approach, for
example having on hardware component specialized for
spreading, another for coding, and another for baseband
processing. Even if the individual components are
software-defined, use of a specialized architecture
strongly limits what waveforms can be executed on the
platform, even if the available processing cycles are
sufficient.

2.3 Classification of existing systems

Taken together, the set of design approaches in VSR
significantly improves the economics and potential rate of
improvement of SDR systems. This is highlighted by the
classification illustrated in . Table 1

Category Examples

Modal SDR
 Software configures the radio
 ASIC or fixed hardware does processing

Dual-mode
cell phone

Reconfigurable SDR
 All signal processing reconfigurable
 Significant use of FPGA or assembly

SpeakEasy
AirNet

Software Radio (SWR)
 Exploits Moore’s Law
 Supports software reuse across platforms

Vanu

Table 1: SDR classification

The simplest example of a software radio is a dual
mode cell phone. This is an example of a Modal SDR. A
dual mode cell phone has two hardware radios in it, one
for each standard that it supports. Software determines
which standard needs to be run, and activates the correct
radio. While this type of SDR provides the flexibility to

switch between modes that were build in to the radio, it
does not provide the user with the ability to upgrade the
system with new waveforms.

Reconfigurable SDR is the type of software radio that
has been built for defense applications over the last
decade. These systems typically involve a combination of
processing technologies such as ASICs, FPGAs, and
DSPs. These specialized systems offer excellent
performance as designed but, if the software investment is
high, rapidly become obsolete as technology development
continues. For example, the SpeakEasy system was built
around a combination of FPGAs and 40 MHz TI C40
DSPs. By the time the first prototype was demonstrated,
COTS DSPs were available at 166 MHz. As the
SpeakEasy software was tied not only to the C40 but to a
specific layout of C40s and FPGAs, the new DSPs could
not be exploited.

Software Radio (SWR) is a type of SDR that
maximizes software reuse across platforms and hardware
generations. The key technology that enables this is to
write the signal processing software as an application-
level program running on top of a standard operating
system (whether on GP CPU, DSP, or other processing
engine). In addition to reducing software development
costs, use of application-level software and an OS allows
the underlying hardware components to be upgraded
without incurring the high cost of redeveloping the
software. As a result, SWR systems can track the Moore’s
Law performance curve over time at a much lower cost
than other types of SDRs.

3. ARCHITECTURE

The Vanu Software Radio architecture separates the
hardware and software portions of the system.

3.1 Hardware Architecture

The hardware architecture, pictured in ,
groups the hardware components into three blocks
representing the antenna, RF-to-digital and processing
subsystems. No hardware component in the architecture is
specialized to any particular waveform. While the
architecture places no limitation on the achievable
waveforms, any given implementation of the architecture
can only support some waveforms. Each implementation
will support a limited range of RF frequencies,
bandwidths, and amount of computational power. For
example, in order for a platform to be software
upgradeable from 2G to 3G cellular standards, the
implementation must be able to receive a 5 MHz wide
band in the appropriate frequency ranges and have enough
computational power to perform the 3G processing.

Figure 1

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

RF-to-digitalmemory

processortimers
I/O

network

Motherboard

antenna

I/Q digita
l at baseband

Analog at c
arrie

r fr
equency

Digital Control

Figure 1: Hardware Architecture

Figure 1

OS
Linux or other POSIX

RDL Interpreter

RDL description
State machines

UI

Sprockit™

Signal processing
class libraries

High speed dataFlexible control

Hardware
independence

Combine modularity
and performance

Reusable toolbox for
new waveforms

Portability
Certification
Ease of use

Figure 2: Software Architecture The rightmost block in represents the
antenna subsystem. The interfaces to the antenna block
are RF transmit and receive analog lines and a digital
control interface. With these interfaces, the architecture
can accommodate traditional passive antennas (for which
the digital interface has no function) as well as advanced
systems such as electrically controllable antenna arrays.
Note that the architecture does not specify a particular
type of digital connection (e.g. RS-232) as this is a detail
of the implementation.

applications and the underlying hardware can be used.
The current implementation runs on Linux and on the
real-time operating system QNX.

The signal processing component consists of the
Sprockit™ middleware layer which performs data
movement and module integration, and a library of signal
processing modules for functions such as FM modulation,
Viterbi encoding, or FIR filtering.

The control component consists of a runtime system
that interprets state machines and processing descriptions,
and a downloadable application that determines which
waveform or communications standard the system will
implement. The portion of the downloadable application
that describes the signal processing pipeline is written in a
Vanu-developed language called RDL, the Radio
Description Language.

The next block to the left in Figure 1, labeled RF-to-
Digital, is the only layer of the system that contains radio-
specific analog components. On the receive side, its sole
function is to generate a digitized representation of a
downconverted slice of the radio spectrum. On the
transmit side, it generates an upconverted radio signal
from a digitized representation. This block does not
perform waveform specific processing such as
demodulation or equalization. In the Vanu software signal processing system, there

is a library of processing modules corresponding to the
objects that may be in the RDL description. The runtime
system instantiates an implementation object from the
library for each processing stage in the RDL description,
sets its parameters as specified by the application, and
makes the appropriate high-speed data connections
between the objects and lower-speed control connections
to the application part. Some of the library objects are
fully generic, such as filters and decoders, while others
provide specialized services for different waveforms.

The name of the third block, Motherboard, is
borrowed from the PC world because software radios built
to the Vanu architecture look much more like computers
than like legacy radios. Like a PC motherboard, this layer
contains memory and processor components, and provides
I/O to a network, to the user, timing support, and similar
functions.

3.2 Software Architecture

Waveform implementations have two parts that face
significantly different portability challenges. The control
part configures and controls the system, and implements
higher level functions such as protocol state machines and
network routing. The signal processing part implements
the transforms between user data and a sampled
representation of a RF waveform. The software
architecture, shown in Figure 2, graphically illustrates
how these two parts are built upon a common operating
system.

4. IMPLEMENTATION EXAMPLES

There are two primary classes of radio systems,
infrastructure devices and client devices. Infrastructure
systems, such as basestations, typically handle multiple
channels simultaneously and have high availability
requirements. Client devices, such as cell phones and
vehicle-based telematics systems, typically operate on a
single channel at a time but have more stringent power
dissipation and form factor requirements. While the
system architectures for both classes of devices are the
same, the different system requirements lead to different
implementations of the architecture. This section presents
two example implementations of the VSR architecture, a
handheld device based on the HP iPAQ PDA and a GSM
basestation.

The Operating System layer sits on top of the
motherboard. Use of an operating system is critical to the
design approach because it isolates the signal processing
application from the hardware and thereby significantly
improves its portability. Vanu systems place no unusual
demands on the operating system. Any POSIX operating
system that supports high data rate transfers between

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

400 MHz
Xscale

MemFlash

Memory
Interface

Card

RF
Card

iPAQ

Motherboard RF-to-Digital Antenna

Figure 3: Implementation of VSR in a handheld

Figure 3

4.1 iPaq Handheld

The block diagram of the iPAQ-based handheld
software radio is shown in . The dotted gray
blocks indicate how the three different components of the
hardware architecture from are implemented. Figure 1

Figure 1

The motherboard subsystem is comprised of the
iPAQ and a memory interface card.. The iPAQ contains a
400 MHz Xscale processor, RAM and FLASH. The
memory interface card, shown in , is essentially a
DMA engine added to the iPAQ, but it also contains other
digital interfaces such as a GSM SIMM card module.

Figure 4

Figure 4: Interface card with iPaq sleeve for scale.

The RF-to-digital block is implemented as a card that
covers the frequency range from 30 MHz to 2.5 GHz, and
has selectable bandwidths of 30 kHz, 200 kHz, and 1.25
MHz. It is designed to operate over the temperature region
of –40 °C to +85 °C and has a maximum transmit power
of 0.6 watts, while providing transmit power control
capable of meeting IS-95 requirements. This card also
contains the A/D and D/A converters as well as a digital

control interface for setting parameters and measuring
variables such as received signal strength.

The antenna block includes both the antenna as well
as a portion of the RF card. The RF card contains several
antenna ports. The active port can be selected through
software to enable use of different antennas for different
bands, or multiple can be activated for applications that
exploit diversity. The digital control interface to the
antenna block in is actually implemented as part
of the RF card, which is why the dotted grey line that
outlines the antenna block contains part of the RF card.

At the time of this writing, the iPAQ system is being
tested, so a complete list of benchmarks is not yet
available. Preliminary data indicates that the IS-136
forward voice channel receiver consumes 22% of the
200 MHz StrongARM processor. The receiver software
measured includes equalization, synchronization,
separation of timeslots, demodulation, decoding, vocoding
and message processing.

4.2 GSM Basestation

A GSM basestation requires scalability to hundreds
or possibly thousands of simultaneous channels, as well as
the ability to provide “five 9’s” availability. These
requirements lead to a very different implementation of
the Vanu Software Radio Architecture, as illustrated in

. Figure 5
In the basestation implementation, the motherboard

subsystem is implemented as a distributed computation
platform using 1U rackmount servers interconnected by a
COTS interconnect (currently gigabit ethernet). These
components were chosen for this implementation because
they are riding computer industry cost curves, are widely
available from a number of vendors and, most
importantly, the technology tracks Moore’s Law, enabling
more channels to be processed with every new generation
of processor that comes to market. This implementation
also allows the system to take advantage of fault detection
and failover techniques developed for distributed systems
in order to meet the availability requirements of the
basestation system.

RackmountedCOTS 1u servers RF-to-Digital Antenna

Figure 5: Basestation Implementation

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

The RF-to-digital section can utilize a variety of
technologies, from traditional cell or PCS band up/down
converters to more flexible software radio front-ends.
Multiple front-ends can be connected to the system to
provide support for multiple antennas and bands. The
digital data is streamed over the switched interconnect
between the front-ends and the processing units.

Multiple different types of antennas can be supported.
We have used both traditional, passive cellular and PCS
antennas, as well as antenna remoting systems that
transfer the RF from an antenna to the processing location
over optical fiber. This type of system allows all of the
antennas in a given region to be supported by an efficient
centralized processing facility.

This implementation of the architecture does not limit
the system to GSM. As long as the RF front-ends are
capable of handling 5 MHz wide channels, the system can
be upgraded to GPRS, EDGE, IS-95, 1xRTT, or
WCDMA by simply downloading new software. The
processing units can distribute the processing load for the
more compute intense standards such as WCDMA. If
necessary, the processing capability of the system can be
upgraded by adding more servers to the rack. The
software infrastructure is designed to handle multiple,
heterogeneous processors running in the system
simultaneously. This enables the use of the latest
technology whenever processing capability is added.

The processing performance of the GSM basestation
software on a 1.6 GHz Athlon processor is shown in
Table 2. It is interesting that the control channel and voice
channel cost the same to process. This is because the
majority of the processing costs are associated with
functions common to both types of channels: equalization,
Viterbi decoding and de-multiplexing. These numbers
indicate that using dual processor, 2 GHz servers that are
readily available today, each 1U box in the rack can
provide the processing capacity for 32 GSM channels (i.e.
four single frequency sectors).

Benchmark % CPU required

Control channel (downlink
BCCH and uplink RACH)

6%

Voice channel (both
downlink and uplink).

6%

Table 2: GSM basestation costs (1.6 GHz Athlon)

5. CONCLUSION

There have been tremendous advances in the
underlying components of software radio systems in the
last several years. Five years ago, A/D converters with
sufficient spurious free dynamic range and speed only
existed as defense research projects, whereas today
converters that meet the requirements of many basestation
applications are commercially available.

Similarly, processors have continued to get faster,
enabling more channels to be processed on a single
processor as well as more complicated standards to be
processed on a single processor. There have also been
significant advances in low power processors, enabling
the construction of some mobile software radio devices.

There have also been considerable advances in RF
technology, resulting in highly integrated CMOS RF chips
that cover wide frequency ranges. However, this
integration is focused at traditional limited-band hardware
radio designs. Software radio front-ends that cover a wide
frequency ranges are typically built using multiple chips
and discrete components. As the software radio market
emerges, we expect to see fully integrated software radio
front-ends come available.

Software radio technology is mature today for
infrastructure and vehicular markets, as well as for
handheld markets with moderate battery life requirements.
The Vanu Software Radio architecture presented in this
paper is designed to minimize the amount of software that
has to be re-written in order to keep pace with advances in
the underlying technology. Thus, as faster processors
come to market, VSR basestation systems will get smaller
and cheaper, and as advances in low power processors are
made, VSR handheld products will extend into markets
that require longer battery life. These benefits will be
coupled with the development cost benefits of software
reuse to provide substantial advantages compared to
traditional SDR architectures.

6. REFERENCES

[1] “AdaptaCell Broadband, Software-Defined Base Station.”
AirNet Communications Corporation. http://www.aircom.
com/pr_adaptacell.htm

[2] Bonser, Wayne. “US defence initiatives in software radio.”
Software Defined Radio: Origins, Drivers and International
Perspectives. Walter Tuttlebee (Ed.). John Wiley & Sons,
Chichester. 2002. Chapter 2.

[3] Bose, Vanu. “Design and implementation of software radios
using general purpose processors.” MIT Ph.D. thesis. June
1999.

[4] Chapin, John. “Handheld all-software radios: prototyping
evaluation for JTRS Step 2b.” http://www.jtrs.saalt.army.mil/
docs/documents/step2b/Vanu.pdf

[5] Chapin, John, Chiu, Andrew, and Hu, Roger. “PC clusters for
signal processing: an early prototype.” IEEE Sensor Array and
Multichannel Signal Processing Workshop. Cambridge, MA.
March 2000. http://www.vanu.com/publications/
sam2000pcclusters.pdf

[6] “Programmable, scalable wireless information infrastructure.”
NSF Contract DMI-9960454 final report. July 11, 2000.

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

	2.1 Portability
	2.2 Component Reuse
	2.2 Generic hardware architecture
	2.3 Classification of existing systems
	3.1 Hardware Architecture
	3.2 Software Architecture
	4.1 iPaq Handheld
	4.2 GSM Basestation

