
DESIGNING JTRS CORE FRAMEWORKS FOR BATTERY-POWERED
PLATFORMS: 10 TECHNIQUES FOR SUCCESS

Charles A. Linn (Harris Corporation, RF Communications Division, Rochester, NY, USA.
clinn@harris.com

ABSTRACT
The recent emergence of several key technologies in the

“embedded” realm has resulted in Software-defined radio
(SDR) systems “coming of age” in offering contemporary
radio communications solutions. As one of the most
developed and evaluated architectural specification efforts in
this area, the US Government Joint Tactical Radio System
(JTRS) Software Communications Architecture (SCA)
specifies an open, standardized architecture for government
software-defined radios. Developing an SCA-compliant
JTRS core framework for small, battery-operated platforms
can pose a significant challenge, however, due to the
constraints of these platforms coupled with high user
performance expectations. As part of Harris’ work in
validating the SCA for battery-powered platforms, we have
identified a number of considerations specific to these
small platforms. This paper presents ten such techniques
that can be used to develop a “lightweight core framework”
that succeeds in this most challenging area.

1. INTRODUCTION

Of the architectures that have been explored for
standardizing software-based radios, no other has received
as much attention, nor been as completely developed as the
US Government’s Joint Tactical Radio System (JTRS)
Software Communications Architecture (SCA) [1]. The
SCA specifies the interfaces and rules for the following
elements:
• Operating System / ORB – This base environment, on

which all other JTRS elements reside consists of a
POSIX operating system and a CORBA ORB that
provides distributed processing services

• Core Framework (CF) – a CF provides a number of
components with standardized interfaces that are
responsible for installing, instantiating, managing and
tearing down JTRS applications. A CF running on
top of an OS/ORB is sometimes referred to as a JTRS
Operating Environment (OE).

• JTRS applications – applications are typically
communications waveforms that are installed and run
on a JTRS platform. Applications run “on top” of the
JTRS OE.
The SCA targets a vast expanse of radio platforms,

including large fixed mount platforms, shipboard, airborne,

ground/vehicular as well as small, battery-powered
manpack and handheld devices.

Any architecture that targets this wide range of
platforms must make engineering tradeoffs between the
capabilities required (and supported in hardware) by the
large platforms and the limited capacities of the smaller
platforms. The SCA employs a very reasonable set of
these tradeoffs, but it remains a formidable challenge to
implement both applications and core frameworks that
work well in the smaller, battery-powered platforms.

Harris Corporation has been a leader in the
development of software-based tactical and strategic radios
since the introduction of the all-software RF-5000 vehicular
radio in 1988. More recently Harris has been performing
work for the US Joint Program Office under a “ JTRS Step
2B” contract to validate the SCA on manpack and handheld
platforms. This work has included the development of a
JTRS manpack form-factor evaluation platform, as well as
development of core frameworks, a software re-
programmable cryptographic subsystem, and several test
applications.

In this paper we will focus techniques for developing
core frameworks that are specifically optimized to target
small, battery powered platforms such as government /
military manpack and handheld radios while retaining SCA
compliance.

2. CORE FRAMEWORK STRUCTURE

Although it is not within the scope of this paper to
describe the detailed structure and requirements for SCA
core frameworks, a high-level class structure is depicted in
Figure 1. This figure shows all of the major instantiated
classes defined in the SCA, as well as the principal
interactions between them. For the purposes of this paper,
two core framework subsets are defined. The first we refer
to as the Upper Core Framework. The upper core
framework is resident on exactly one CORBA-capable GPP
in the radio. This subset of the SCA-defined elements
provides radio-wide services not associated with any
particular CORBA node. The Lower Core Framework
consists of a set of classes that provide node (processor)
specific services. There are typically as many lower core

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

framework subsystems as there are CORBA capable
processors in the radio.

The primary client of the core framework is the
Human-machine Interface (HMI). This package, which not
only includes the user interface itself, but also includes any
other platform code that falls outside the SCA Core
Framework or Operating System.

The DomainManager, a part of the upper core
framework, forms the primary contact point for the HMI.
It, along with the other upper core framework elements, is
responsible for creating and managing applications, as well
as providing (and controlling) access to the lower core
framework services.

The DeviceManager primarily represents the lower core
framework. This component, of which there is one per
CORBA node, is responsible for creating and managing all
of the platform Devices, FileSystems and Logs for a given
node. It registers itself (and in turn its components) with
the DomainManager.

3. SMALL PLATFORM CHARACTERISTICS

To understand these challenges and in turn address the
means to overcome them, let us first examine the
characteristics of small, battery powered platform by

examining a representative single channel handheld
platform employing a cryptographic subsystem. When
designed as a JTRS-compliant platform, such a platform
will typically employ two general-purpose processors
(GPP) capable of supporting CORBA traffic, a
programmable cryptographic subsystem (CSS), and one or
more digital-signal processors (DSP) and / or Field-
programmable Gate Arrays (FPGAs). The two CORBA-
hosting GPPS will be distributed on the two sides of the
CSS—one of the unencrypted (Red) side, and the other on
the encrypted (Black) side.

In a handheld platform, each of the GPPs will have the
processing power ranging from a higher-end Personal
Digital Assistant (PDA) class processor to that of a low-
end laptop processor (25 – 250 MHz). Main execution
memory for each processor will be between 16 MB to 64
MB, and program storage typically will be FLASH based.
DSP and FPGA components will in handhelds be
employed to accomplish mathematically intensive low-
level modulation functions and critical (sub-millisecond)
timing functions. All modulation and demodulation
through Intermediate-Frequency (IF) will be accomplished
with programmable (software) components.

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

In comparison with current (non-JTRS) handheld
platforms, this represents both a tremendous increase in
processing and program storage capacity as well as a very
challenging packaging challenge. On the other hand, even
when several 200 MHz processors are employed it still has
a fraction of the processor capability that a ground/vehicular
or shipboard JTRS platform.

Ironically, at the same time small platforms are limited
in processing capability, they often have stricter
requirements for platform and application responsiveness.
Since they are battery powered, and operational time is
always at a premium, it is typical for radio users to turn the
radio on, use it for a brief period of time, then turn it off
again. This usage scenario puts a premium on minimizing
radio power-up time, which is expected to be less than 10
seconds – considerably less than the time most “standard”
JTRS systems need to power-up. In a similar manner,
users expect handhelds and manpacks to be able to change
channels and waveforms more quickly (in several seconds
at most) than fixed-side equipment, as they view manpacks
and handhelds as actual radios, whereas the fixed-side

equipment is typically viewed through a PC-like interface,
and hence subject to (less responsive) PC expectations.

The combination of these factors makes JTRS
manpack and handheld application and core framework
development a challenging task indeed. In this paper we
will address ten “techniques for success” that we have
found are key in developing lightweight core frameworks
optimized for these small platforms.

3. TEN TECHNIQUES FOR SUCCESS

3.1 Optimize while maintaining SCA compliance

In most cases a core framework that works well on
small platforms can be produced by merely optimizing the
implementation, rather than changing the SCA
specification or producing a non-compliant
implementation. There are several ways that can be
employed to effectively extend the SCA to meet a core
framework’s needs.

Upper Core Framework
(only 1 per radio)

• CF::DomainManager
• CF::ApplicationFactories
• CF::Applications
• Overall FileManager
• Naming Service
• Event Service

“Lower” Core Framework
(one set per CORBA node)
• DeviceManager
• FileSystems instances
• Log instances

Human-Machine Interface / System Services

Installed Applications

Installed Platform Devices

Instantiate,
configure &
connect

use FileSystems, Logs

use FileManager

use Devices

Install, create and
manage applications

Install and
manage Devices
and Services

connects Device
registration

get Device
info

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

The SCA specifies specific interfaces and behaviors
that must be supported by the CF elements, and to be a
compliant implementation, these interfaces must be
implemented. However, in most cases CF implementation
details are intentionally left unspecified, leaving
considerable freedom to the implementer.

First, it is up to the implementation to choose how the
CF elements are allocated to different process spaces. In
addition, it is assumed that the same manufacturer is
creating the DomainManager, ApplicationFactory and
Application classes. Since these components can
communicate using interfaces in addition to those defined
in the SCA, several options exist:

1. If CF elements are located in the same address
space, standard native language calls can be
employed between the CORBA servant classes.

2. If CF elements are not in the same address space,
than their interfaces can be extended with
additional operations by inheriting a specialized
interface from the SCA CF Interface Design
Language (IDL). In this way, the “external world”
sees the standard interface, but classes “in the
know” can narrow the CORBA object reference to
get the richer interface.

This second technique is particularly useful when
working in a system with CF components that are not
guaranteed to be implemented by the same CF
implementer, but perhaps are. This situation arises in
several cases, one example would be between a
DomainManager and a registering DeviceManager. For
example, if, company A’s DomainManager sees a
DeviceManager registering with it, it can try to narrow the
DeviceManager’s CORBA object reference to the
(expanded) interface provided by company A’s
DeviceManager. If the narrow succeeds, then the extended
interface can be used. If the narrow fails, then the
DomainManager must use the standardized interfaces
common to all DeviceManagers. In this way compliance is
maintained but enhanced operation is still allowed when
the circumstances permit.

3.2 Parse XML only on installation

The SCA specifies that applications, application
components (“Resources”), Devices and Services be all
described by XML. The core framework uses the
information in the XML to determine (to just name a few)
what components need to be created, how to find the
created instances, what interfaces these components
provide, how they need to be configured, and how they
need to be connected. In addition, a number of
“dependencies” are specified in XML that indicate what sort
of Devices are required by a given application component,

or on what type of processor (Device) the component
should be deployed.

To efficiently use this information, the XML, which is
essentially a text file, must be parsed into a computer
readable form. This parsing is typically done using a
commercially available XML parser, and due to the amount
of XML that has to be parsed, can be a rather lengthy
(multi-second) process. The SCA does not specify (either
for applications or Devices) when this parsing takes place,
and some core frameworks parse all application and device
XML each time the radio is turned on. For small
platforms it is essential that this parse process take place as
part of the installation process or on the next power-up
following installation (when the user can tolerate a “one-
time” increased boot time). The already-parsed information
can then stored to a (non-XML) file for fast restoration on
future system boots. Using this technique will shave
valuable seconds from the radio boot time.
3.3 Use digested profile information

Although the SCA does not specify how XML is to be
parsed, one of the more common methods is to employ a
commercial parser that creates a “Domain Object Model”
(DOM) standard database. Although in larger systems it is
often acceptable to use the DOM model on an ongoing
basis for CF decisions, this method has some drawbacks
for small platforms.

First of all, the generated DOM databases
corresponding to applications, components and Devices are
often very large. DOMs are constructed to exactly mirror
the XML they parse, and in the JTRS system there can be
many, many lines of this XML. Based on Harris’
experience in our Phase 2B validation contract, where two
small applications were developed yielding a total of 4700
lines of XML, and also considering the fields both required
and optional from the SCA appendix D, it is easy to
believe that 50K to 100K of XML will be typical in radio
hosting a full suite of applications and devices. Many of
these XML fields (e.g. all fields in the .DPD file) are
intended for HMI and / or application documentation, and
not used by the Core Framework. When parsed into a
DOM model, total database sizes exceeding 10 MB are
possible – a considerable fraction of the memory available
to a handheld radio! In addition, unless XML is going to
be parsed each time on power-up (see technique 3.2), this
DOM model will have to be saved to a file so that it can
persist between radio sessions, further increasing storage
space.

A second reason to use digested information is that it
is desirable (to minimize both power-up and application
launch time) that as many decisions about “what to do”
should be made a install time. If a standard DOM is used
without any “digest” done, processing is deferred until the
decision is needed, and calculating this decision takes

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

valuable time. For a simple example, consider the process
of determining the configuration parameters that an
ApplicationFactory will use to configure a newly created
Application. These parameters are drawn (in precedence
order) from the create() parameters, SAD, SPD
implementation properties, SPD level properties and SCD
properties. If this “digest” process were performed at install
time, a compacted list of parameters could be produced,
with all precedence conflicts resolved except the final
overlay with the create() parameters. By doing this, not
only could valuable processing time be saved later (when
time is more critical and other running applications may be
more heavily using the CPU), but also the “working”
database size could be considerably reduced.

3.4 Don’t write more XML than is necessary

The SCA Appendix D specifies XML data type
descriptions that describe applications, application
components, Devices and Services, as well as various core
framework components. This XML is intended to support
multiple clients of whom only one is the core framework.
Other fields are intended for HMI, test tools and, in some
cases the application components themselves, and can be
deleted if these clients do not have need of the information.
For example, consider once again configuration properties.
A given application (e.g. SINCGARS) may have dozens of
user configuration parameters, yet only the parameters that
need to be initialized by the CF itself (i.e. have initial
values) need to be specified in XML. Omitting the
optional information saves XML development time, file
storage space and helps minimize the size of the domain
profile database.

3.5 Use threads vs. processes when possible

A typical full-up JTRS platform involves an HMI,
over a dozen core framework class instances, dozens of
application components, dozens of Devices as well as the
ORB and underlying operating system. Providing that
operating system supports the concept of separate address
spaces (i.e. processes), choices need to be made on which
elements share process spaces (either as shared utility
classes or as separate threads with the same address space)
and which are created as separate processes.

The time spent communicating between components
using CORBA will vary enormously based on these
decisions. Using the Objective Interface Systems
ORBexpress v2.5.0 ORB running on the QNX operating
system, the ratio of inter-process to intra-process times for
a simple 2-way CORBA call passing a long unsigned and
returning a long unsigned is over 2000 to 1! Although this
measurement employed a standard TCP/IP transport instead
of a shared memory transport, it is unlikely that will ever

be less than 200 to 1, with inter-process CORBA calls
taking in the millisecond range on typical platforms.

Considering this, when developing both core
frameworks and applications, it is important to minimize
the number of processes that must be traversed, while still
meeting the isolation requirements mandated by the SCA
security supplement [2]. When possible, the
DomainManager, ApplicationFactory and any of their
shared classes and domain profile information should be
process co-located. Similarly, the DeviceManager, its
device profile information, FileSystems and Log should be
process co-located if this is practical. Since there is a
reasonable amount of communication between devices and
their DeviceManager, it is desirable if these too could be
process co-located. For security supplement reasons each
Application should be in a different process space than the
core framework, but within an application components can
be created using a ResourceFactory to achieve process co-
location.

3.6 Consider partially linking multiple components

When one looks at the time distribution for either
radio power up or application launch time in a JTRS radio,
one major contributor is the time it takes to launch and
load core framework, Devices or Applications components.
Whereas the SCA may lead one to believe that every
component must be separately loadable, this is not true for
at least the core framework and its Devices. In many cases
a single, partially linked shared-library or executable file
can be generated that contains multiple components. True,
each of these individual components will have their own
individual XML files, but these files can cite a common
loadable / executable file.

For an example, in a handheld radio GPP, the program
code for the DomainManager, ApplicationFactory,
Application, DeviceManager, Log and various file
components could be linked in a common file that is
loaded on power up. Note that this does not mean that the
instances cannot be dynamically created or deployed (e.g.
the DeviceManager creating a number of fileSystems) since
loading a file that is already loaded generally has no effect
beyond incrementing a reference count.

3.7 Minimize individual CORBA interactions

All communications between the SCA-defined Core
Framework, Application and Device interfaces are intended
to employ CORBA. Without “bypassing” CORBA, there
are still a number of techniques to minimize the sheer
number of calls that must be performed, as well as
implementation details that are not required (or expected) to
employ CORBA.

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

For a graphic example, consider a DeviceManager that
has created 10 devices, two file systems and a log
registering with the DomainManager. If the
DomainManager needs to examine each device and its three
XML files (if nothing else to see if it has changed), there
could easily be over 100 CORBA calls.

To minimize this interaction several techniques can be
used. First, as mentioned before, parse XML on install.
For each XML file examined there is a minimum of 3
CORBA calls (open the file, read, close the file), and ten
devices represent 30 XML files. Second, consider adding
some non-primitive attributes (beyond the required SCA
interfaces) to the DeviceManager. As an example, an
attribute parallel to the DeviceManager::Devices could be
devised which returned a list of Devices and their
identifiers instead of the standard list of devices. Using
this attribute would make it unnecessary to query the
Device itself to find its identifier. As detailed in section
3.1 this technique is fully SCA compliant, as the standard
interfaces are maintained.

A third method of minimizing CORBA calls is
detailed in the next section.

3.8 Speed up local file access

The SCA-specified File interface meets its goal of
providing a distributed file system, but its use comes at a
great cost in efficiency. Application components must use
the standard CF::File interface, since they are limited to
using the POSIX subset defined in the SCA Application
Environment Profile (AEP) which does not include the
native OS file operations. Core framework components
and Devices, however are not subject to this limitation, and
hence can considerably increase file read speed when the file
is located on the same processor as the CF component.

The main problem is how the CF / Device component
can obtain the native OS file name it needs, given a
reference to a CF::File. To do this, extend the File
interface (through IDL inheritance) to add an additional
operation, getNativeFilename(), with a processor ID passed
as a parameter. When the client CF component gets the
CF::File, it tries to narrow this object reference to the more
derived type. If this succeeds, it can now use this special
knowledge to obtain the native filename, if indeed the file
is found to reside on the same processor (and hence
reachable via standard POSIX read() operations).

Use of this technique is especially valuable for
loadable and executable devices, whose implementations
typically require native OS access so they can pass the
name to the operating system. Without employing this
technique, these devices would have no choice but to make
a local file copy of known name, even if the source file was
on the same file system, as there is no way specified in the
SCA for determining a CF::File’s native file system name.

3.9 Minimize use of Device capacities

Although the SCA supports the concept of Device
allocation capacities, it does not require their use. Unlike
larger platforms, in most cases with smaller platforms a
given component will almost always be deployed on the
same Device – there are no “pool” of generic processors
available to load components on an “as needed” basis. In
addition, higher-level mechanisms typically limit the
number and types of simultaneously running applications.
When these conditions are true, there is no need for the
Devices in question to maintain multiple (or even any)
capacities. If not capacities are supported, then the
ApplicationFactory is not required to perform
allocateCapacity() operations on the devices, speeding
application launch.

On common misconception is that the SCA requires
devices to support capacities: to quote the SCA [1],

“The registerDevice operation shall raise the CF
InvalidProfile exception when: … 2. The
Device’s SPD does not reference allocation
properties.”

Here it is important to note that there are two types of
allocation properties – “normal” and “external”. This
requirement can be satisfied by use of a non-external
allocation property, which does not involve performing an
allocateCapacity() operation on the device, be instead only
involves simple string comparisons within the
ApplicationFactory.

3.10 Consider using parser-free DeviceManagers

Especially in handheld platforms, the versatility of
having a fully generic DeviceManager that follows XML
script to determine which Devices to launch and how to
configure them is not always justified. In these cases a
processor-specific DeviceManager should be considered.
This component would support all of the SCA required
interfaces but be “hard coded” (rather than XML driven) to
launch and configure its Devices, Services and
FileSystems.

Even if this technique is employed, XML files still
need to exist to describe the components and their
interfaces. The DomainManager would use this XML, but,
as long as it is consistent with the DeviceManager’s actions
the DeviceManager itself does not need to parse these XML
files. As a result, no XML parser would be required by the
DeviceManager, potentially saving over 1 MB in code
space.

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

4. CONCLUSION

Harris’ experience is that the SCA is a valid
specification for small platforms, but the implementation
of core frameworks, devices and applications is far from
straightforward. Every design decision must be with made
with efficiency in mind, and one must look beyond the
obvious to come up with a system that meets its
requirements and user expectations.

The performance of the core framework is central to the
performance of the radio as a whole, since the usable
platform capacity and system responsiveness are primarily
defined by this subsystem. Using the techniques outlined
in this paper will help accomplish this goal, leading to not
only extensible, but usable radios.

5. REFERENCES
[1] MSRC-5000SCA: “Software Communications

Architecture”, version 2.2, 17 November, 2001
[2] MSRC-5000SEC: “Security Supplement to the Software

Communications Architecture Specification”, version 1.1,
17 November, 2002.

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

