
 
A PORTABLE SOFTWARE IMPLEMENTATION OF A HYBRID MANET ROUTING 

PROTOCOL 
 

Peter Sholander, Paul Coccoli, Tracey Oakes and Sean Swank 
Scientific Research Corporation, Atlanta, GA, U.S.A.    
{psholander, pcoccoli, toakes, sswank}@scires.com 

 
 

ABSTRACT 
 
This paper describes a portable software-implementation 
of a hybrid-routing protocol that uses a flexible mix of 
proactive and reactive routing techniques within Mobile 
Ad hoc Networks (MANETs) such as Military tactical 
networks.    After a review of the benefits/applications of 
proactive, reactive (on-demand) and hybrid routing, the 
architectural details and protocol operation of SRC’s 
MobileRouteTM software are presented.  Experimental 
results for that software’s processor utilization on a 650 
Mhz Pentium III processor are given.   The MobileRoute 
software was originally developed on Red Hat Linux.  
This paper outlines the procedures that were used to port 
that routing software to Windows CE and the QualNet 
network-simulation tool. 
 
 

1. INTRODUCTION 
 
Current Internet routing protocols such as Open Shortest 
Path First (OSPF) were developed for the fixed Internet 
backbone where routers are bolted to the ground.  It is 
well-known that OPSF fails in mobile wireless 
environments because it attempts to continuously track 
every change in the network topology.  In wireless 
environments, OSPF’s “proactive” approach to routing 
causes wasted overhead that often saturates the wireless 
medium with control traffic for routes that are never used.  
As such, there has been extensive research on new routing 
protocols for the “Mobile Ad hoc Networks (MANETs)” 
projected for next-generation military networks. 
 MANETs differ from wired Internet Protocol (IP) 
networks in several respects.  Ad hoc networks lack the 
centralized infrastructure found in both cellular and fixed 
networks.  Nodes and infrastructure may be highly 
mobile.  Second, there is a blurring of IP’s typical 
distinction between routers and hosts.  Third, most 
military MANETs have low bandwidth (kbps) wireless 
links and battery-operated nodes that require power-
efficient operation. 

Existing IP routing protocols can be classified as 
either “proactive” or “reactive”.  Proactive protocols 
attempt to continuously evaluate all of the routes within a 
network – so that when a packet needs to be forwarded, a 
route is already known and can be used immediately.  
OSPF is an example of a Proactive Routing Protocol 
(PRP) for wired IP backbone networks.  MANET-specific 
examples include Optimized Link State Routing (OLSR) 
[1] and Topology Broadcast based on Reverse Path 
Forwarding (TBRPF) [2].  In contrast, Reactive Routing 
Protocols (RRPs) invoke a route determination procedure 
“on-demand” only.  Thus, if a route is needed then some 
sort of a global-search procedure is employed.  The 
classical flood-search algorithms are simple reactive-
protocols.  MANET-optimized examples include Ad hoc 
On-demand Distance Vector (AODV) routing [3] and 
Dynamic Source Routing (DSR) [4].   

It is well-known that proactive-protocols are not 
optimal for either MANETs that have rapidly changing 
topologies or sensor networks that require emission 
control (EMCON) modes-of-operation.  However, purely 
reactive protocols are often inappropriate for several 
common MANET topologies such as cluster-based 
networks and relatively static networks.  In addition, 
reactive protocols introduce additional latency (and 
possibly source-routing overhead) for real-time traffic.  
As such, “hybrid” or “zone” routing protocols that use a 
mix of both proactive and reactive routing techniques at 
each network node have been proposed.  Two examples 
are Cornell’s Zone Routing Protocol (ZRP) [5] and SRC’s 
“Wireless Ad hoc Routing Protocol (WARP)”.  WARP is 
based on Cornell’s ZRP, with additional enhancements 
for Quality of Service (QoS) support.  (Note: WARP 
resulted from a collaboration between SRC, Cornell 
University and Air Force Research Lab during 1999.)    
 There have been theoretical comparisons of 
proactive, reactive and hybrid routing protocols [6].  
BBN’s comparison of HSLS, DSR and ZRP then showed 
that (for fairly uniform node densities and traffic patterns) 
the asymptotic overhead for proactive, reactive and hybrid 
routing scaled as O(N1.5), O(N2) and O(N1.66), 
respectively, in large N-node networks.  However, that 
work also noted that ZRP might have superior scaling 

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

mailto:psholander, pcoccoli, toakes, sswank}@scires.com


performance with respect to traffic load, non-uniform 
traffic patterns, and mobility-rates. 
 In general, hybrid routing’s flexibility allows the 
network operator to adjust the protocol operation to match 
the network’s current mission and state.  For example, 
purely proactive operation might be used in relatively 
static networks such as inter-ship links.  In contrast, 
purely reactive routing might be used in: a) dynamic 
networks such as clouds of tactical Unmanned Aerial 
Vehicles (UAVs); or b) networks of ground-based sensors 
that have strict Low Probability of Detection (LPD) 
requirements.  These protocol adjustments could occur 
without changing the network software or “rebooting” any 
of the underlying MANET routers [5].  This flexibility is 
a tradeoff against the added complexity of hybrid 
protocols.  As such, the next section describes the 
complexity of SRC’s current software implementation of 
a hybrid routing protocol for MANETs.  
 

2. MOBILEROUTE SOFTWARE 
 
SRC’s Wireless Ad hoc Routing Protocol (WARP) is 
based on Cornell’s Zone Routing Protocol (ZRP) with 
additional enhancements for Quality of Service (QoS) 
support.  The initial implementation of WARP provides 
best-effort routing and QoS routing based on link-stability 
and node-energy status.     
 MobileRouteTM is the commercial name for the 
current SRC multi-platform implementation of the 
WARP/ZRP concepts.  The MobileRoute software 
development took place on x86 PCs and Red Hat Linux 
(6.2, 7.1 and 7.2 kernels) with a subsequent port to 
Compaq iPAQ Personal Digital Assistants (PDAs) 
running Debian Linux on 206 MHz StrongARM 
processors.  The WARP software requires no kernel 
modifications.  During 2002, it is being ported to other 
operating systems/platforms such as Windows CE and the 
Joint Tactical Radio System (JTRS).  

User Interface

Proactive
Routing

Neighbor
Discovery

Management
Reactive
Routing

Kernel Routing TableLinux
Kernel

User
Space

Ethertap 
Device
Driver

User Application
(i.e. Netscape)

ICMP

TCP/UDP
Socket

netlink

User Interface

Proactive
Routing

Neighbor
Discovery

Management
Reactive
Routing

Kernel Routing TableLinux
Kernel

User
Space

Ethertap 
Device
Driver

User Application
(i.e. Netscape)

ICMP

TCP/UDP
Socket

netlink

 
Figure 1.  High-Level Software Architecture for 

MobileRoute Software 

 WARP abides by standard IP layering practices.  It 
commits no layering violations, and resides above a 
COTS TCP/IP stack.  WARP performs its on-demand 
route discovery and maintenance using UDP datagrams.  
The interface to the Linux kernel’s routing tables then 
uses a clean, open interface (e.g., the netlink sockets 
library). 
 
2.1 Protocol Operation 
 
 The WARP software’s functionality is broken up into 
several processes.  WARP’s Neighbor Discovery Protocol 
(NDP) locates one-hop neighbors.  Each node periodically 
multicasts a “Hello” message, while simultaneously 
listening for other nodes’ “Hello” messages.  The 
reception of another node’s “Hello” message indicates a 
one-hop neighbor relationship between those two nodes.   
(Note: SRC chose to implement a Layer 3 neighbor-
discovery process in order to improve portability across 
radio systems and increase compatibility with Military 
security-practices. Link-layer information about 
“up/down” links could also be leveraged within the 
MobileRoute architecture.)   
 WARP’s Proactive Routing Protocol (PRP) is a 
timer-based link-state routing protocol.  This approach 
allows better control over the routing-overhead.  In 
contrast, “triggered” link-state protocols such as OSPF, 
which send every topology change throughout the entire 
network, can rapidly saturate mobile wireless networks 
with their routing overhead.   
 WARP’s PRP builds and maintains an internal link-
state table based on the neighbor information passed from 
NDP and the Link State Advertisements (LSA) received 
from other nodes in the source’s local “zone”.  (Note: the 
simplest definition of a “zone” is all nodes within X hops 
of that source node.)  LSAs are periodically multicast to 
the nodes in the source node’s local zone – in order to 
propagate that node’s view of its zone’s network 
topology. The information in a node’s internal link-state 
table is then used to modify the kernel’s “best-effort” and 
“Quality of Service (QoS)” routing tables.  The 
MobileRoute software (in conjunction with the Linux 
kernel) uses each IP packet’s Differentiated Services 
CodePoint (DSCP) marking to determine which of these 
two routing tables is used to determine each packet’s next-
hop.   
 When an application attempts to send traffic to a node 
not contained in its node’s routing zone, the application 
data is sent to the RRP process via the Ethertap interface.  
RRP sends a “Route Request” to the nodes on the edge of 
that node’s routing zone.  Each node that receives that 
request either answers it with a “Route Reply”, if the node 
has a route to the destination, or forwards that request.  
When a Route Reply is received by the source node, the 

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved



route is stored in the Route Cache, and the application’s 
data packets are then sent to the destination, embedded in 
“Source Routed Data Packets”.  Nodes may report invalid 
routes (due to topology changes) via a Route Error 
message.  The recipient of a Route Error prunes the 
associated route from its Route Cache, and then sends an 
ICMP Host Unreachable message to the application 
whose data packet was using that broken route.  This 
preserves a user’s expectations for the behavior of 
existing applications such at Netscape.  The appropriate 
hold-down timers are used for all RRP messages to avoid 
generating excessive routing overhead. 
 WARP’s NDP and Reactive Routing Protocol (RRP) 
are separate from its PRP to allow flexibility in porting to 
handheld devices and microsensors.  WARP’s RRP uses 
explicit source-routing that provides end-to-end QoS 
support in conjunction with PRP.  Its major difference 
with DSR is that WARP’s RRP is a user-space application 
that should be more portable across operating systems.  Its 
disadvantage is the added overhead associated with its 
UDP encapsulations for both data and control packets.  
(Note: the WARP software architecture is designed so that 
other group’s PRPs and RRPs can be substituted for 
SRC’s protocols.)  
 WARP User Interface (UI) is currently a command-
line interface (CLI) to the underlying processes.  Future 
plans include an SNMP interface and a Graphical User 
Interface.  Finally, WARP’s Management process reads 
the configuration files and configures (but does not 
modify) the underlying Linux kernel.  It also provides the 
interface between the UI and the routing processes. 
 
2.2 Quality of Service (QoS) Routing 
 
A more general term for QoS-based routing is “constraint-
based” routing wherein the route-selection is based on 
metrics other than simple hop-count.  This is a known 
hard problem.  Let d(j,k) be a routing metric for a link 
between node j and k.  Then, for any path P = 
(j,k,l,…m,n), that path’s routing metrics (d) may be 
classified as follows [7]. 
   
• 
• 
• 
• 

Additive if:   d(P) = d(j,k) + … + d(m,n) 
Multiplicative if:  d(P) = d(j,k)* … *d(m,n) 
Concave if:  d(P) = min.(d(j,k), … d(m,n)) 
Convex if:  d(P) = max.(d(j,k), … d(m,n))
   

 The standard routing metrics of delay, jitter, cost and 
hop count are additive.  Reliability is multiplicative, while 
bandwidth is concave.  It is well-known [7] that finding 
optimal routes based on a combination of two, or more, 
additive and/or multiplicative constraints is NP-complete 
if those metrics are independent.  Algorithms for routing 
on hop-count and bandwidth are much simpler [7].  

Bellman Ford’s algorithm or Dijkstra’s algorithm suffices 
for those two constraints.  For example, the route 
computation algorithm could first prune all paths that fail 
the minimum bandwidth requirement, and then run 
Bellman-Ford on the remaining candidate paths.  As such, 
the MobileRoute software currently uses a combination of 
hop count and one, or more, concave/convex metrics that 
function like a maximum/minimum bandwidth constraint.   
 WARP supports both best-effort routing based on 
hop-count and QoS routing based on wireless-specific 
routing metrics such as link-stability and “node energy 
status”.  The “node energy status” metric allows 
preferential avoidance of routes through battery-operated 
handheld radios – in favor of ones through vehicle-
mounted radios and/or AC-powered radios.  Many mobile 
nodes have limited battery power, so maximum utilization 
of high-available battery power or nodes that are using 
AC power is often helpful in a mobile ad hoc network.  
Sensor networks are one example of this metric’s intended 
application.  This metric is implemented as a convex 
routing metric, since a path’s “node-energy status” is 
calculated as the inverse of the fractional battery-power at 
the node (in that path) with the least remaining battery-
life.  Hence, it can be easily integrated with a hop-count 
routing metric.  (Note: SRC used the inverse of the 
remaining battery-power because existing route-
calculation algorithms (e.g., the Dijkstra’s algorithm used 
by PRP) typically assume that higher link-metrics 
correspond to worse paths.)  On Linux, the fractional 
battery-power can be read from the /proc/apm file.  This 
Linux feature allowed SRC to emulate this metric using 
AC-powered laptops and desktops in our test-bed. 
 The link-stability routing metric gives preference to 
more “stable” routing-table entries.  As such, it may be 
well suited to flows that require QoS support.  TCP flows 
also prefer stable paths since packet loss forces the TCP 
flow-control mechanism into its “slow start” mode, which 
reduces a flow’s end-to-end throughput.  This metric can 
also be implemented as a convex routing metric, since a 
path’s “stability” is equal to that of the least stable link.  
Hence, it can also be easily integrated with a hop-count 
routing metric.   
 

3. SYSTEM ABSTRACTION LAYER 
 
The System Abstraction Layer (SAL) shown in  
adds a software layer to the WARP architecture that 
abstracts common operating system features into a higher 
level API.  Additionally, it offers client processes a 
unified event-driven framework for asynchronous inter-
process and inter-client communication.  The abstraction 
layer localizes all system-dependent code, making porting 
to other platforms much easier. 

Figure 2

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved



 SRC’s R&D addressed two general problems.  The 
first is that most research-grade networking code is 
specific to one kernel version of one Operating System 
(OS).  In contrast, DoD and commercial systems are 
heterogeneous.   The second problem is that DoD 
acquisition programs now require the validation of 
networking protocols in large networks with 100’s to 
1000’s of nodes.  As such, the simulation of those 
protocols must use “real code” for the network layers and 
applications – so as to validate the correctness of 
production-software in large networks without running 
large-scale field exercises.  This is a critical capability 
since differences between “kluged-up” simulation code 
and the production “gold-code” can produce significant 
performance-differences. 
 As such, SRC developed a “System Abstraction 
Layer” (SAL) for the MobileRoute software that allows 
portability between Operating Systems and platforms.  
The SAL decouples the MobileRoute software from the 
underlying OS’s socket calls, memory management 
techniques and inter-process communications as shown in 

.  SRC’s commercial goal was porting the 
MobileRoute software to Windows CE.  In addition, SRC 
is porting MobileRoute to a JTRS Step 2C Radio during 
2002.  Section 3.2 describes how SRC also ported the 
MobileRoute software to the QualNet discrete-event 
simulation tool, which is one of the DARPA 
recommended simulation tools for the Future Combat 
System program. 

Figure 2

 
3.1. WindowsCE 
 

Windows currently has a much larger market-share than 
open-source software, and a wider range of supported 
hardware platforms and wireless-network adapter cards.   
With this in mind, SRC has ported WARP to a Windows 
CE-powered PDA running PocketPC2002, such as a 
Compaq iPAQ.    
 SRC had developed software to implement IP 
Differentiated Services (RFC 2474) on Windows NT 
hosts.  SRC used a third-party’s IP Security (IPsec) Client 
as a framework for implementing Differentiated Services 
(DiffServ) within a working Windows NT NDIS 
(Network Driver Interface Specification) driver.  SRC 
enhanced the driver’s source code to implement a subset 
of the DiffServ architecture, including packet marking and 
class-based queuing.  SRC also developed a control 
application to allow the user to define per-application 
priorities according to well-known TCP and UDP ports.  
This information was stored and accessed by the NDIS 
driver that marked the packets.  That NT NDIS driver ran 
on any PC running Windows NT or Windows 2000.  The 
predominant goal of implementing DiffServ at the host 
was to extend IP QoS to the desktop, with an emphasis on 
improving IP-based services to cellular Personal 
Communications Services (PCS) users. 
 The aforementioned software (which is a requirement 
for MobileRoute on Windows), along with WARP, was 
ported to Windows CE during 2002.  That port required 
all of the kernel-specific functions (sockets, semaphores, 
route table access, etc.) to be written to the appropriate 
Windows CE interfaces.  Since the SAL contained the 
kernel-specific function calls, the majority of the software 
that was ported to WinCE was contained in the SAL.   
  

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved



���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

WARP
Main NDP RRPPRP

Kernel

User
System Abstraction Layer (SAL)

SocketsMessaging/
IPC ICMP

User
Packet

Interface

Signals/
Events

Routing
Table

Interface

Shared
Memory
Tables

Sockets
Process/Thread User Packet Interface

Messaging/IPC

Signals/Events
Routing Table Interface
Shared Memory TablesICMP

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

WARP
Main NDP RRPPRP

Kernel

User
System Abstraction Layer (SAL)

SocketsMessaging/
IPC ICMP

User
Packet

Interface

Signals/
Events

Routing
Table

Interface

Shared
Memory
Tables

Sockets
Process/Thread User Packet Interface

Messaging/IPC

Signals/Events
Routing Table Interface
Shared Memory TablesICMP

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

WARP
Main NDP RRPPRP

Kernel

User
System Abstraction Layer (SAL)

SocketsMessaging/
IPC ICMP

User
Packet

Interface

Signals/
Events

Routing
Table

Interface

Shared
Memory
Tables

Sockets
Process/Thread User Packet Interface

Messaging/IPC

Signals/Events
Routing Table Interface
Shared Memory TablesICMP

 
Figure 2.  System Abstraction Layer (SAL) 

 In Linux, MobileRoute’s NDP, PRP, RRP, and 
WARP Management pieces are all separate processes.  
For the port to Windows CE, SRC designed the 
MobileRoute software such that it was one process, with 
WARP Management, NDP, PRP, and RRP all being 
separate threads in the WARP PROCESS.  WARP’s 
NDP, PRP, and RRP “threads” then required minimal 
effort to port to Windows CE.  The WARP Management 
process did require significant effort since it is responsible 
for: a) WARP-environment initialization; b) starting and 
monitoring the NDP, PRP, and RRP threads; c) acting as a 
dispatcher for messaging between the NDP, PRP, and 
RRP threads; and d) clean-up prior to termination.  Much 
of the WARP Management functionality was specific to 
the platform that it was running on, and hence a larger 
effort was required to port that piece of the MobileRoute 
software. 
 On Windows CE, the IP Differentiated Services 
software described earlier was also needed by WARP to 
provide the equivalent functionality that the Ethertap 
driver provided in Linux.  Since the IP Differentiated 
Services software was an NDIS driver, it had access to all 
incoming/outgoing IP packets and could provide the 
necessary functionality to the Windows CE version. 
 
3.2. QualNet 
 
 QualNet (www.scalable-networks.com) is an event-
driven network simulation tool that is a commercial 

version of the GloMoSim package developed under the 
DARPA Global Mobility (GLOMO) program.  QualNet is 
optimized for modeling TCP/IP traffic across MANETs.     
 The main technical issue with porting routing-code to 
the QualNet simulation package was that “real” code ran 
on multiple nodes while QualNet emulated the same code 
on multiple virtual-entities.  As such, the QualNet “Node 
Data Structure” (which indicated which virtual entity was 
currently being simulated) had to be passed to many of the 
WARP functions.  The appropriate QualNet-related 
systems calls were also added to the SAL. 
 In order to call QualNet functions from within the 
SAL wrapper functions, the QualNet Node structure 
needed to be available.  This was accomplished by 
encapsulating it within a “SalTask structure”, which was 
then passed as an argument to most SAL functions.   The 
SalTask held all “global” data for a task (process or 
thread).  By protecting this data within the SalTask 
structure, each task on each node was provided with its 
own “protected” memory region within the confines of the 
QualNet simulation environment. 
 QualNet is essentially callback-based; messages 
passed between layers are handled by layer-specific 
message handlers.  SRC’s SAL is also callback-based; 
applications provide callbacks to handle system events, 
such as message queues, timers expiring or data arriving 
on sockets.  With the exception of startup code, the 
WARP application callback functions ran unmodified.  

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

http://www.scalable-networks.com/


QualNet messages were simply translated to SAL events, 
and the WARP callbacks then executed as normal.  
 

4. PERFORMANCE RESULTS 
 
A previous paper [8] compared the performance of 
WARP and Optimized Link State Routing (OLSR) in a 
14-node test-bed.  That paper’s performance metrics were 
the packet-loss fraction and the protocol overhead (e.g., 
number of routing packets generated per successfully 
delivered data-packet). This paper focuses on a “unit-
test” of the MobileRoute software’s CPU usage versus 
forwarded load.  Experimental results for the 
MobileRoute software’s processor utilization on a 650 
MHz Pentium III processor are given for the Linux 
version of the SAL.  This section also describes the 
experimental setup and the technique used to measure the 
CPU usage. 
 
4.1. Experimental Setup 
 
This paper used the three-node network shown in Fi  
to perform three separate tests.  In all three tests, Node A 
used nttcp to generate a traffic flow of IP packets from 
Node A to Node C.   

gure 3

Figure 3.  Test Network 

 

A CBA CCBB
 

 The first test used static routes between all three 
nodes.  This test measured the CPU usage (at Node B) of 
the Linux kernel’s forwarding process and the overhead 
associated with sending/receiving IP packets.  The second 
and third tests then used WARP as the routing protocol.  
In the second test, the zone radius of each node was set to 
two.  In this case, each node used WARP’s Neighbor 
Discovery Protocol (NDP) and Proactive Routing 
Protocol (PRP) to find a route from Node A to Node C.  
Packet forwarding still used the Linux kernel’s 
forwarding process.  In the third test, each node’s zone 
radius was set equal to one.  In this case, WARP’s 
Reactive Routing Protocol (RRP) was needed to find a 
route from Node A to Node C.  As such, this test also 
measured the overhead of RRP’s user-space forwarding 
process at Node B. 
 
4.2. Measuring CPU Usage 
 
Since WARP forks off multiple processes after startup, it 
is not trivial to measure computational overhead directly 
by seeing how much processor time the warpd process 
consumes.  Instead, this test uses an alternative approach 

that uses a “cycle soaker” [9].  A cycle soaker is a tool 
that measures the overhead of the system by using a 
subtractive approach: it tries to consume as much 
processor time as it can, and then measures how much 
progress it has achieved in periodic intervals.  The amount 
of work that the cycle soaker does depends on how many 
cycles are taken by other processes on the same system.   
 The cycle soaker reports the current CPU load on the 
system (from 0 to 100%) at one-second intervals. Since 
the cycle soaker runs at a low priority and performs little 
work, the measurement is an accurate representation of 
the other activity on the system.  For this paper, the 
average CPU-usage is computed by taking the overheads 
reported by the cycle soaker over a 100 second interval 
and then averaging them.   
 
4.3. Results and Discussion 
 
Figure 4 shows results for the three tests described above 
for forwarding loads between 68 kbps and 469 kbps.    

0
2
4
6
8

10
12

0 200 400 500
Forwarding Load (kbps)

C
P

U
 U

sa
ge

 (%
)

Kernel Forwarding
PRP Forwarding
RRP Forwarding

300100
0
2
4
6
8

10
12

0 200 400 500
Forwarding Load (kbps)

C
P

U
 U

sa
ge

 (%
)

Kernel Forwarding
PRP ForwardingPRP Forwarding
RRP Forwarding

300100

 
Figure 4.  CPU Usage for MobileRoute Software 

The CPU usage for the first two tests (labeled as “kernel 
forwarding” and “PRP forwarding”) were virtually 
identical.  This result was expected since the NDP and 
PRP timers were set to the defaults of 5 seconds and 10 
seconds, respectively.  As such, NDP and PRP provide 
negligible load to the system.  The CPU usage for the 
third test was higher, since RRP’s explicit source routing 
requires extra packet-copying between “user-space” and 
“kernel-space”.  The advantage though is that explicit 
source routing allows for better end-to-end QoS control in 
larger MANETs.  It also allows load balancing and 
alternate path routing.   If CPU usage is a paramount 

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved



concern then implementing a hybrid routing-protocol with 
a “stateless” RRP such as AODV is an option. 
 

5. CONCLUSIONS 
 
The main conclusion is that hybrid routing protocols can 
be implemented as portable application-layer software 
with reasonable complexity and performance.  The 
MobileRoute software used in this paper is about 18,000 
lines of code – of which about half is routing code and 
half is the overhead of the hybrid-routing framework and 
User Interface (UI).   The CPU usage for RRP’s user-
space process showed the expected linear increase with 
forwarding load – with a utilization of 11.5% for a 
forwarding load of 461 kbps. 
 

REFERENCES 
 

[1]   T. Clausen, et al, “Optimized Link State Routing Protocol”,  
draft-ietf-manet-olsr-06.txt, Sept. 1, 2001.  (See: 
www.ietf.org/html.charters/manet-charter.html for the latest 
versions of these Internet Drafts or subsequent RFCs.)                                  

[2]  R. Ogier, F. Templin, B. Bellur and M. Lewis, “Topology 
Broadcast Based on Reverse-Path Forwarding (TBRPF)”, 
draft-ietf-manet-tbrpf-05.txt, March 1, 2002. 

[3]  C. Perkins, E. Belding-Royer and S. Das, “Ad hoc On-
Demand Distance Vector (AODV) Routing”, draft-ietf-
manet-aodv-11.txt, June 19, 2002.                                

[4]  D. Johnson, D. Maltz, Y-C Hu and J. Jetcheva “The 
Dynamic Source Routing Protocol for Mobile Ad Hoc 
Networks (DSR)”, draft-ietf-manet-dsr-07.txt, Feb., 2002.                              

[5]  Z. Haas and M. Pearlman, “Determining the Optimal 
Configuration for the Zone Routing Protocol”, IEEE JSAC, 
Special Issue on Ad-Hoc Networks, August 1999.  

[6]  C. Santivanez, “Asymptotic Behavior of Mobile Ad hoc 
Routing Protocols with respect to Traffic, Mobility and 
Size”, Northeastern University CDSP Tech. Report TR-
CDSP-00-52, Oct. 2000.   

[7]  X. Xiao and L. Ni, “Internet QoS: A Big Picture”, IEEE 
Network, March/April 1999, pp. 8-18.  

[8]  P. Sholander, A. Yankopolus, P. Coccoli and S. Tabrizi,  
“Experimental Comparison of Hybrid and Proactive 
MANET Routing Protocols”, MILCOM 2002, Oct. 2002.  

[9] The Cycle Soaker tool can be found at 
http://www.uow.edu.au/~andrew/linux/#zc  

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

http://www.ietf.org/html.charters/manet-charter.html

	A PORTABLE SOFTWARE IMPLEMENTATION OF A HYBRID MANET ROUTING PROTOCOL

