

EVALUATING FPGAS FOR COMMUNICATION INFRASTRUCTURE

APPLICATIONS

Mel Tsai (Berkeley Design Technology, Inc., Berkeley, CA, USA; tsai@bdti.com)
Jeff Bier (Berkeley Design Technology, Inc., Berkeley, CA, USA; bier@bdti.com);

and Jennifer Eyre (Berkeley Design Technology, Inc., Berkeley, CA, USA;
eyre@bdti.com);

ABSTRACT

Until recently, FPGAs were rarely used for signal
processing. FPGAs were held back by factors such as
limited capacity, design flows that were unfamiliar to DSP
engineers, and a lack of DSP-related intellectual property
libraries. In the last few years, though, a growing number
of FPGAs and related products targeting DSP applications
have begun to address these shortcomings. At the same
time, the requirements of important emerging DSP
applications like software-defined radios have begun to
exceed the capabilities of traditional DSP processors,
motivating system developers to consider alternatives.

In this paper we examine the key requirements of
communications infrastructure applications targeted by
FPGAs. We present a methodology for evaluating
FPGAs for these applications using metrics such as
capacity and cost/performance, and use this methodology
to evaluate the latest DSP-enhanced FPGAs from Altera
and Xilinx. We also compare FPGAs and their associated
DSP-oriented development tools to products offered by
DSP processor vendors, and assess the features, strengths,
and weaknesses of key products in both categories.
Finally, we discuss key technology trends pertinent to
FPGAs and DSPs.

1. INTRODUCTION

Implementing the digital signal processing (DSP) tasks in
communications applications typically requires chips with
very strong number-crunching capabilities. At the same
time, communications applications place stringent
constraints on cost and power consumption. DSP tasks in
telecom products have historically been implemented
using DSP processors (often referred to as “DSPs”) or
application-specific integrated circuits (ASICs). ASICs
can achieve high levels of performance with hard-to-
match cost and energy efficiency, but they require
massive design efforts. DSPs, on the other hand, ease the

development process, and provide adequate performance
and reasonable efficiency for many applications.

Throughout most of their history, field-programmable
gate arrays (FPGAs) have rarely been used to implement
DSP tasks, for a number of reasons. Until fairly recently,
FPGAs lacked the gate capacity to implement demanding
DSP algorithms and did not have good tools support for
implementing DSP tasks. They have also been perceived
as being expensive and power hungry. All this may be
changing, however, with the introduction of new DSP-
oriented products from FPGA vendors like Altera and
Xilinx.

2. DSP APPLICATION REQUIREMENTS

To help in understanding when it is appropriate to use an
FPGA for the DSP tasks in a communications
infrastructure application, it is useful to understand the
unique demands DSP applications place on an
implementation technology. (By “implementation
technology,” we mean the type of device—e.g.,
microprocessor, FPGA, ASIC, etc.—that is used to
implement the DSP functionality.) There are several
common requirements that set DSP applications apart and
make typical DSP applications particularly challenging to
implement. These requirements drive the choice of
implementation technology, and include:

Real-time processing requirements. Most DSP
applications process signals in real time, placing strict
constraints on the time available to process each digital
data sample. In particular, communications infrastructure
equipment must be capable of processing multiple
independent channels simultaneously and in real time.
Indeed, these requirements often exceed the performance
capabilities of even the fastest DSP processors.

Diverse computational requirements. The sample rates
(that is, the rate at which new samples arrive) in
communications infrastructure applications can range up
to the hundreds of MHz. Thus, these applications are very

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

computationally intensive, performing repetitive
arithmetic operations over vast amounts of data. This is
distinctly different from typical computer software, for
example, which tends to rely more heavily on decision-
making (if-then-else) processing. A basic operation used
in many DSP algorithms is the multiply-and-accumulate
(MAC) operation. Hence, it is highly desirable for many
DSP applications to be able to execute many MACs per
second and this metric is sometimes used as a proxy for
the DSP performance of a device. DSP applications also
often make heavy use of bit-manipulation operations,
memory accesses, and various arithmetic operations.

Numeric fidelity. Different DSP applications require
varying levels of numeric fidelity. For example, signal
fidelity in an OFDM (orthogonal frequency division
multiplexing) receiver will be limited by communication
channel noise and analog to digital converters; the
receiver implementation may therefore tolerate relatively
low numeric fidelity. Numeric fidelity in a DSP algorithm
implementation is affected by the precision and dynamic
range of the data, which are in turn a function of the
format of the data word (its length in bits and whether it is
a fixed-point or floating-point format). 16-bit data word
widths (and occasionally 24 or 32 bits) are commonly
used in communications applications implemented using
DSPs.

High memory bandwidth. DSP applications process vast
amounts of data at a high rate. The ability to bring large
amounts of streaming data on and off the chip, and keep
on-chip computational resources fed with data, is essential
to meeting computational demands and real-time
constraints.

Low cost. Hardware cost is a key consideration in most
applications. However, other costs may become the
overriding concern in a communications infrastructure
application. For example, in low-volume applications,
development costs can be more important than bill of
materials costs. When evaluating chip costs in
communications infrastructure applications, cost per
channel can be more important than simple chip cost.

Low energy consumption. Communications infrastructure
equipment may be sensitive to energy consumption due to
heat dissipation and power supply design considerations.
Like cost, energy efficiency is often evaluated on a per-
channel basis rather than per chip in these applications.

Reprogrammability. New and emerging communications
applications often are based on evolving standards and
other changing requirements, and equipment developers
may have little advance knowledge about how their

product may need to adapt to new standards and changing
requirements in the future. This lack of predictability is at
odds with time-to-market pressures; developers often
must design a product before the standards and
requirements are fully fixed. These conflicting objectives
motivate use of a technology that allows field upgrades so
that unanticipated future demands can be met after
product delivery. In addition to the challenge of adapting
to evolving standards, the high complexity of many
communications infrastructure systems (such as third-
generation cellular base stations) makes it nearly
impossible to identify all of the bugs and implement all of
the desired functionality before the product reaches the
market. Use of a reprogrammable technology allows the
developer to fix bugs in the field and add features after the
product has been released.

The relative importance of each of the above requirements
varies depending upon the specifics of the application.
Thus, the designer must weigh each of these (and possibly
other) requirements carefully before choosing an
implementation technology.

3. FPGA TECHNOLOGY OVERVIEW

An FPGA is a chip composed of an array of configurable
logic blocks (also called logic cells), programmable
interconnect resources, I/O blocks, and sometimes
embedded specialized fixed-function blocks. The basic
structure of an FPGA device is shown in Figure 1. Each
logic block can be configured, or programmed, to perform
one of a variety of simple functions, such as computing
the logical AND of two inputs. Configuration
information that is read by the device when it is powered

up specifies the configurations of each of the logic blocks
and the connections between them, and thus specifies the
functionality that is implemented by the FPGA. Hence,

 Interconnect
Logic block
I/O block

Figure 1. Simplified FPGA structure.

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

the FPGA’s logic blocks can be used as building blocks to
implement any kind of functionality desired, from low-
complexity state machines to complete microprocessors.
However, FPGAs are limited; the clock speed at which an
FPGA executes is determined in part by the functionality
it is implementing (that is, by its configuration), and each
FPGA provides a finite set of logic blocks and
interconnect resources.

A key advantage of FPGAs is their flexibility; an
FPGA can be configured to match the requirements of an
application. This advantage does not mean that FPGAs
are appropriate for every application, however. This is
because, in general, there is a tradeoff between a device’s
flexibility and its efficiency. FPGAs are extremely
flexible, but because they are reconfigurable and not
optimized for a specific task, they are typically not as
efficient (in terms of speed, cost, power consumption,
and/or die size) as devices that are based on fixed-
function hardware, such as ASICs. In this respect, the
FPGA is a jack of all trades, but master of none. Another
tradeoff exists between device performance and
application development effort. While FPGAs can
achieve much higher performance than programmable
DSPs or general-purpose processors (GPPs), developing
DSP applications for FPGAs is generally far more
challenging.

4. FPGAS FOR DSP

FPGAs were not originally designed with the needs of
DSP applications in mind, but a number of significant
advances in FPGA technology have improved the
suitability of FPGAs for DSP. These advances include:

Increased Capacity. In the past, FPGAs simply did not
have the capacity (in terms of the number of logic cells)
needed to implement challenging DSP algorithms. This
was a fundamental limitation that prevented their use in
DSP applications for which they would otherwise be well
suited. Today’s FPGAs, however, have capacity far in
excess of that available in FPGAs of even a few years ago
and are now able to accommodate complex DSP
functionality. For some applications, increased capacity
also yields increased application performance.

Increased Speed. Historically, FPGAs were not able to
execute DSP tasks fast enough to meet the real-time
constraints of many DSP applications. One reason for this
is that FPGA chips did not operate at particularly high
clock frequencies (for example, relative to
microprocessors). Recent improvements in the process
technologies used to fabricate FPGAs have increased their
operating frequencies, helping to boost their performance.
Clock speed is only one factor in application performance,

however. Equally important is the amount of work the
chip can execute in each clock cycle. FPGAs have
inherently highly parallel architectures; that is, they can
execute many operations in parallel. Thus, in applications
that can benefit from parallel processing (such as multi-
channel applications), the new high-capacity FPGAs
(even without DSP-oriented enhancements) can perform
much more work per clock cycle than most processors.

Increased memory bandwidth. Older FPGAs did not have
sufficient memory bandwidth to meet the needs of
demanding DSP applications. Recent FPGAs address this
problem by including numerous hardwired memory
blocks (embedded within the logic array). The new high-
capacity FPGAs have far higher memory bandwidth than
DSP processors. This is an important advantage, because
many DSP applications are heavily data-intensive.

Better DSP-oriented tools. Until recently, FPGA
development tools provided little specialized support for
development of DSP applications. For example, the tools
did not explicitly support implementation of common
DSP algorithms, such as filters. In addition, the tools
were not integrated with other tools commonly used to
develop DSP algorithms, such as MATLAB. As a result,
an engineer who needed to implement a DSP algorithm
with an FPGA would typically first design and simulate
the algorithm using software such as MATLAB, then
manually create an HDL (hardware description language)
description of the algorithm for implementation with an
FPGA—a time-consuming, error-prone process. Recent
improvements in FPGA tools have significantly improved
their usability for DSP applications.

Increasing availability of IP libraries. Intellectual
property (IP) modules can significantly accelerate design
cycles by offering carefully designed and tested functional
blocks. Until recently, there were few DSP-oriented IP
modules available for FPGAs, forcing engineers to
develop nearly every function from scratch. This process
was particularly painful because of the lack of DSP-
oriented development tools. In comparison, the supply of
optimized algorithm implementations for DSP processors
from DSP manufacturers and from third-party developers
has been much richer. This is another area in which
FPGAs have recently made significant strides, with both
of the major FPGA vendors (Altera and Xilinx) now
offering libraries of DSP-oriented IP modules.

Architectural enhancements for DSP. Altera’s recently
announced Stratix FPGA family and Xilinx’s Virtex-II
family both offer significant DSP-oriented architectural
enhancements. For example, both products offer hard-
wired on-chip multipliers (embedded throughout the

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

reconfigurable logic array) intended to accelerate the
multiply-accumulate (MAC) and similar operations
common in DSP algorithms. By including some
hardwired processing elements, FPGAs can improve their
energy efficiency and cost/performance while offering
outstanding DSP performance.

5. EVALUATING FPGA PERFORMANCE

The computational requirements of today’s
communications applications often exceed the
performance available from even the fastest DSP
processors. This makes the new breed of DSP-enhanced
FPGAs a potentially attractive solution for certain
applications. A key challenge for system designers,
though, is understanding where it is appropriate to use
these new devices. Unfortunately, designers have been
stymied by the lack of a reliable way to evaluate the DSP
performance of FPGAs or to compare their performance
to that of DSP processors. Clearly, there is a need for
DSP-oriented benchmarks that will enable engineers to
make these comparisons.

5.1. FPGA Benchmarking Methodology

Good benchmarking requires careful selection of
benchmarks and a well-developed methodology. BDTI’s
well-established benchmarking of processors for DSP
applications uses a suite of common DSP algorithms, such
as finite impulse response (FIR) filters, optimized in
assembly language on each processor. A processor’s
results on each benchmark can be thought of as “basis
vectors” that can be combined to estimate performance in
an application.

Although the computation requirements of a typical DSP
application are dominated by a handful of algorithms,
individual algorithm kernels are not suitable as
benchmarks for high-capacity FPGAs, for several reasons
[1]. With a DSP processor, application developers
aggressively optimize each of the key performance-
hungry algorithms for speed. When a particular algorithm

is running, it has exclusive use of all of the processor’s
execution units. With an FPGA, in contrast, designers
have the flexibility to trade off parallelism (and hence
performance) against resource (logic blocks, multipliers,
etc.) utilization. Thus, unlike on a DSP, it makes little
sense for a single algorithm to consume all of an FPGA’s
resources because no resources would remain for the rest
of the application. Instead, the designer must optimize the
application as a whole, allocating the available hardware
among each of the constituent algorithms. These
observations lead us to conclude that a benchmark for
FPGAs must look more like a complete application and
less like a single algorithm kernel.

5.2. Performance Metrics

Although they are powerful, the latest DSP-enhanced
FGPAs are also expensive. The least expensive DSP-
enhanced FPGAs such as those in the Xilinx’s Virtex-II
[2] and Altera’s Stratix [3] families are priced in the
hundreds of dollars, and the most expensive family
members cost thousands of dollars per chip. Such prices
render these chips unsuitable for highly cost-constrained
products like cable TV set-top boxes or DSL modems.
But in communications infrastructure equipment, a chip is
not automatically disqualified due to high cost—
especially if a single chip can handle the processing for
many communications channels. Thus, benchmark results
should be reported in terms of the number of channels that
can be supported on a single chip and the associated cost
per channel (based on the chip cost). These results can be
used to compare an FPGA’s performance to that of DSPs.

5.3. Benchmark Development

BDTI recently developed a new communications-oriented
benchmark. Rather than using a single algorithm as a
benchmark, The BDTI Communications BenchmarkTM
models a single-channel OFDM receiver, as shown in
Figure 2. OFDM is a complex technique that is finding
increasing use in a variety of high-speed data
communications applications. Thus, this benchmark is

IQ FIR
Filter FFT Slicer ViterbiIQ FIR
Filter FFT Slicer Viterbi

Figure 2. BDTI’s Communications BenchmarkTM.

The benchmark is a simplified single-channel receiver, shown in the block diagram above. The IQ block
performs demodulation into in-phase (I) and quadrature (Q) signals; the Slicer block maps fast Fourier transform
(FFT) outputs to points in a QAM (quadrature amplitude modulation) constellation. [4]

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

designed to be representative of the kinds of processing
found in communications equipment for applications such
as DSL, cable modems, and fixed wireless systems. The
benchmark includes blocks for demodulation, filtering,
time-frequency domain transformation, and channel
decoding. Input and output data formats and sample rates,
along with other implementation details, are specified as
part of the benchmark definition. Benchmark
implementers are tasked with implementing as many
channels of the receiver as they can fit onto a single chip.

6. RESULTS AND CONCLUSION

BDTI invited Altera and Xilinx to implement the BDTI
Communications Benchmark on their DSP-enhanced
FPGAs. BDTI also invited Motorola and Texas
Instruments to implement the benchmarks on their high-
end DSPs, which target communications infrastructure
equipment. Altera and Motorola took up our challenge,
and each delivered a highly optimized implementation of
the benchmark.

The FPGAs excelled in this benchmark. A typical
member of Altera’s Stratix family of FPGAs is projected
to handle dozens of communications benchmark channels.
In contrast, a high-end DSP could not support even a
single a single channel [5]. With DSPs falling short of the
needs of today’s most demanding applications, such
performance levels can make FPGAs an attractive
solution.

While some high-capacity FPGAs carry staggering,
multi-thousand-dollar price tags, both Altera and Xilinx
offer DSP-enhanced FPGAs with prices in the low
hundreds of dollars, which puts them in the same price
range as many high-end DSPs. A huge performance
advantage combined with comparable prices leads to a
huge advantage in terms of cost/performance for DSP-
enhanced FPGAs in many applications.

Our initial benchmarking work suggests that the new
DSP-enhanced FPGAs can indeed achieve impressive
performance in certain types of DSP applications. But our
experience with these new devices, and discussions with
users, indicate that factors other than performance are
often decisive in decisions regarding use of an FPGA.
For example, one key challenge facing DSP applications
developers using FPGAs is the relative complexity of the
design process and lack of DSP-specific features in the
development tools, compared to what is available for the
best-supported DSPs.

Clearly, as with most technology-selection choices,
the decision of whether to use an FPGA for a DSP
application requires a sophisticated, multidimensional
evaluation—one that depends on a large number of
specifics of the target application. Thus, although
benchmark results are important, there are many “soft”

considerations that are of equal importance when
choosing between an FPGA and a DSP processor.

One of these considerations is the availability of
relevant staff expertise. For example, most DSP
application developers are not familiar with the design
flow for FPGAs. Implementing even a simple FIR filter
on an FPGA requires a totally different design process
(and mind-set) than implementing the same function on a
DSP processor. Altera and Xilinx offer tools and libraries
to help simplify the process, but there will be a formidable
learning curve for engineers who are primarily
accustomed to working with processors. In addition, the
time required to develop an optimized implementation of
even a relatively modest DSP function for an FPGA can
be dramatically longer than that required to write an
optimized version for a DSP. For example, one source
told BDTI that it can take six man-months to develop an
optimal Fast Fourier Transform (FFT) implementation for
an FPGA, compared to our own experience of
approximately one week of development for a high-end
DSP. Altera’s and Xilinx’s libraries of functions help
address this issue—but often, the function that is needed
is not exactly what is in the library, or is not in the library
at all.

7. REFERENCES

[1] J. Bier, “Evaluating Performance: FPGAs vs. DSPs,” EDN,

Reed Business Information, Highlands Ranch, Colorado,
October 3, 2002 (forthcoming).

[2] Xilinx Inc., Xilinx Virtex-II Series FPGAs,
http://www.xilinx.com/publications/matrix/virtex_color.pdf
, Xilinx Inc., San Jose, California, 2001.

[3] Altera Corporation, Stratix: New Levels of Integration,
http://www.altera.com/literature/br/br_stx.pdf, Altera
Corporation, San Jose, California, March 2002.

[4] J. Eyre, “FPGA/DSP Blend Tackles Telecom Apps,” EE
Times, CMP Media LLC, Manhasset, New York, pp. 49-50,
July 1, 2002.

[5] G. Beloev et al., Focus Report: FPGAs for DSP, Berkeley
Design Technology, Inc., Berkeley, CA, 2002
(forthcoming).

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

